Research on dynamic response analysis and evaluation method of resistance to progressive collapse of reinforced concrete frame structures at high temperatures

LI Zhi1, 2, HUANG Xinhui2, JI Fuquan3, ZHONG Yu3, DENG Xiaofang1, 2

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (12) : 298-307.

PDF(3109 KB)
PDF(3109 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (12) : 298-307.
CIVIL ENGINEERING

Research on dynamic response analysis and evaluation method of resistance to progressive collapse of reinforced concrete frame structures at high temperatures

  • LI Zhi1,2,HUANG Xinhui2,JI Fuquan3,ZHONG Yu3,DENG Xiaofang*1,2
Author information +
History +

Abstract

To investigate the collapse performance of reinforced concrete (RC) frame structures under high temperatures, this paper utilizes ABAQUS finite element software to establish a finite element model for a two-story RC frame structure with instantaneous corner column removal. Based on the full validation of the model's accuracy, the study examines the impact of different durations and areas of fire exposure on the dynamic response of the RC frame structure to progressive collapse following corner column failure, through sequential thermo-mechanical coupling modeling. Furthermore, considering the uncertainty of parameters, a probabilistic assessment of the resistance to progressive collapse of RC frame structures under high temperatures is conducted. The results show that with the increase of fire time, when the first layer corner lattice is exposed to fire, the maximum peak displacement of the structure without columns increases by 153.26% compared with that at room temperature, and its resistance mechanism is mainly cantilever action and vierendeel effect, and the tensile membrane effect occurs when 60min is exposed to fire. When the first and second floor corner grids are exposed to fire, the maximum peak displacement of the structure after column removal is increased by 145.81%. Compared with the first layer corner lattice exposed to fire, the vierendeel effect is weakened, but when exposed to fire 60min, the floor produces a more obvious tensile membrane effect to resist collapse. Based on the uncertainty of structure and load, the cumulative distribution function obtained by fitting can better evaluate the collapse probability of RC frame structure at high temperature.

Key words

reinforced concrete structures / corner column removal scenario / dynamic response / high temperature / progressive collapse

Cite this article

Download Citations
LI Zhi1, 2, HUANG Xinhui2, JI Fuquan3, ZHONG Yu3, DENG Xiaofang1, 2. Research on dynamic response analysis and evaluation method of resistance to progressive collapse of reinforced concrete frame structures at high temperatures[J]. Journal of Vibration and Shock, 2025, 44(12): 298-307

References

[1] 国务院事故调查组. 福建省泉州市欣佳酒店“3•7”坍塌事故调查报告[R]. 北京: 国务院, 2020.
State Council Accident Investigation Team. Investigation Report of Xinjia Hotel Collapse in Quanzhou City, Fujian Province on March 7[R]. Beijing: The State Council, 2020. 
[2] 哈尔滨市应急管理局. 哈尔滨市道里区哈尔滨市玉手食品有限责任公司库房“8•4”较大坍塌事故调查报告[R]. 哈尔滨: 哈尔滨市应急管理局, 2021.
Harbin Emergency Management Bureau. Investigation Report of “8•4” Large Warehouse Collapse in Harbin Yu Shou Food Co. Ltd[R]. Harbin: Harbin Emergency Management Bureau, 2021. 
[3] Qian K, Li B. Dynamic Performance of RC Beam-column Substructures Under the Scenario of the Loss of a Corner Column: Experimental Results[J]. Engineering Structures, 2012, 42: 154-167.
[4] Design of Buildings to Resist Progressive Collapse: UFC 3-023-03[S]. Washington DC: US Department of Defense, 2005.
[5] Orton S L, Kirby J E. Dynamic response of a RC frame under column removal[J]. Journal of Performance of Constructed Facilities, 2014, 28(4): 04014010.
[6] Xiao Y, Kunnath S, Li F W, et al. Collapse test of three-story half-scale reinforced concrete frame building[J]. ACI Structural journal, 2015, 112(4): 429.
[7] Xiao Y, Zhao Y B, Li F W, et al. Collapse test of a 3-story half-scale RC frame structure[C]//Structures Congress 2013: Bridging Your Passion with Your Profession. 2013: 11-19.
[8] 师燕超, 李黎明, 郭海山等. 五层足尺预应力压接装配框架结构顶层角柱失效试验研究[J]. 建筑结构学报, 2023, 44(05).
Shi Yanchao, Li Liming, Guo Haishan, et al. Experimental study on a five-story full-scale post-tensioned prestressed precast frame with failure of top corner column[J]. Journal of Building, 2023, 44(05).
[9] Li Z, Liu Y, Huo J, et al. Experimental assessment of fire-exposed RC beam-column connections with varying reinforcement development lengths subjected to column removal[J]. Fire Safety Journal, 2018, 99: 38-48.
[10] Jin L, Lan D, Zhang R, et al. Effect of fire on behavior of RC beam-column assembly under a middle column removal scenario[J]. Journal of Building Engineering, 2023, 67: 105496.
[11] Adam J M, Buitrago M, Bertolesi E, et al. Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario[J]. Engineering Structures, 2020, 210: 110414.
[12] EN 1992-1-2: 2004. Eurocode 2: Design of concrete structures-Part 1-2: general rules-structural fire design. Brussels: European Committee for Standardization, 2004.
[13] GSA. General Services Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major organization projects; 2013.
[14] 钱凯, 谭鑫宇, 李治,等. 高温下钢筋混凝土板抗冲击性能及其影响因素[J]. 工程力学, 2023,40(01):132-143+154.
Qian Kai, Tan Xinyu, Li Zhi, et al. Impact performance and the influence factors of reinforced concrete slab under high temperatures[J]. Engineering Mechanics, 2023,40(01):132-143+154.
[15] Lim L C S, Wade C A. Experimental fire tests of two-way concrete slabs[M]. School of Engineering, University of Canterbury, 2002.
[16] ISO 834 International Standard. Fire Resistance Tests, ISO 834-1[J].1999.
[17] Wang G G. Performance of reinforced concrete flat slabs exposed to fire[J]. 2006.
[18] 王勇, 段亚昆, 张亚军等. 单向面内约束混凝土双向板抗火性能试验研究及数值分析[J]. 工程力学, 2018, 35(03): 65-78.
Wang Yong, Duan Yakun, Zhang Yajun, et al. Experiment and numerical analysis on the fire-resistant performance of two-way concrete slabs with unilateral in-plane restraints[J]. Engineering Mechanics, 2018, 35(3): 65-78. 
[19] EN 1993-1-2: 2005. Eurocode 3: Design of steel structures-Part 1-2: general rules-structural fire design. British Standard Institution, 2005.
[20] 李治, 原小兰, 薛天琦等. 不同去柱工况下多层钢框架结构抗连续倒塌机理研究[J]. 工程力学, 2024, 41(04): 140-150. 
LI Zhi, Yuan Xiaolan, Xue Tianqi, et al. Behavior of progressive collapse of multi-layer steel frame structure under different column removal conditions[J]. Engineering Mechanics, 2024,41(04):140-150.
[21] 李治, 原小兰, 董腾方,等. 爆炸荷载作用下RC梁-板子结构抗连续倒塌动力效应研究[J]. 振动与冲击, 2023,42(09):27-35+46.
LI Zhi, Yuan Xiaolan, Dong Tengfang, et al. Anti-progressive collapse dynamic effect of RC beam-slab substructure under blast load[J] Journal of Vibration and Shock, 2023,42(09):27-35+46.
[22] 李治, 薛天琦, 原小兰,等. 角柱失效下不等跨RC空间梁-柱子结构抗连续倒塌机理研究[J]. 振动与冲击,2023,42(06):115-125+179.
LI Zhi, Xue Tianqi, Yuan Xiaolan, et al. Load resisting mechanism of RC spatial beam-column substructures with unequal spans in the loss of a corner column scenario[J] Journal of Vibration and Shock, 2023,42(06):115-125+179.
[23] 张大山, 董毓利, 房圆圆. 考虑受拉薄膜效应的板块平衡法修正及在混凝土双向板中的应用[J]. 工程力学, 2017, 34(03): 204-210+240.
Zhang Dashan, Dong Yuli, Fang Yuanyuan. Modification of segment equilibrium method through considering tensile membrane effects and its applications in two-way concrete slabs[J]. Engineering Mechanics, 2017, 34(3): 204―210, 240.
[24] 李国强, 周昊圣, 郭士雄. 火灾下钢结构建筑楼板的薄膜效应机理及理论模型[J]. 建筑结构学报, 2007, (05): 40-47.
Li Guoqiang, Zhou Haosheng, Guo Shixiong, Mechanism and theoretical model of membrane action in slabs of steel buildings subjected to fire[J]. Journal of Building, 2007, (05): 40-47.
[25] 全国消防标准化技术委员会建筑构件耐火性能分技术委员会. GB/T 9978—2008 建筑构件耐火试验方法[S]. 北京: 中国标准出版社, 2008.
Sub-Technical Committee on Fire Resistance of Building components of National Fire Protection Standardization Technical Committee. GB/T 9978—2008 Test method for fire resistance of building components[S]. Beijing: China Standard Press, 2008. 
[26] Herraiz B, Vogel T. Novel design approach for the analysis of laterally unrestrained reinforced concrete slabs considering membrane action[J]. Engineering Structures, 2016, 123: 313-329.
[27] 于晓辉, 钱凯, 吕大刚. 基于随机Pushdown方法的钢筋混凝土框架结构抗连续倒塌能力概率评估[J]. 建筑结构学报, 2017, 38(02): 83-89.
Yu Xiaohui, Qian Kai, LÜ Dagang, Probabilistic assessment of structural resistance of RC frame structures against progressive collapse using random Pushdown analysis[J]. Journal of Building, 2017, 38(02): 83-89. 
[28] Mirza S A, MacGregor J G. Variations in dimensions of reinforced concrete members[J]. Journal of the Structural Division, 1979, 105(4): 751-766.
[29] Mirza S A, MacGregor J G. Variability of mechanical properties of reinforcing bars[J]. Journal of the Structural Division, 1979, 105(5): 921-937.
[30] 钟炜辉, 张驰, 邱帅子,等. 地震作用下钢框架结构抗竖向连续倒塌可靠度分析[J]. 建筑科学与工程学报, 2022,39(03):55-63.
Zhong Weihui, Zhang Chi, Qiu Shuaizi, et al. Vertical Anti-progressive Collapse Reliability Analysis of Steel Frame Under Seismic Action[J]. Journal of Architecture and Civil Engineering,2022,39(3):55-63.
[31] 贾明明, 杨先霖, 吕大刚,等. 基于易损性的RC空间框架填充墙结构连续倒塌能力分析[J]. 建筑结构学报, 2018,39(S1):230-236.
Jia Mingming, Yang Xianlin, LÜ Dagang, et al. LFragility-based progressive collapse capacity analysis of RC frame structures with infilling walls[J]. Journal of Building, 2018,39(S1):230-236.
[32] 张大山, 林旭华, 于晓辉,等. 火灾下钢筋混凝土双向板失效概率评估[J]. 华中科技大学学报(自然科学版), 2023,51(07):90-97.
Zhang Dashan, Lin Xuhua, Yu Xiaohui, et al. Failure probability assessment of two-way reinforced concrete slab in fire[J].Journal of Huazhong University of Science and Technology (Natural Science Edition),2023,51(07):90-97.
[33] Razali N M, Wah Y B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests[J]. Journal of statistical modeling and analytics, 2011, 2(1): 21-33.
[34] Lilliefors H W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown[J]. Journal of the American statistical Association, 1967, 62(318): 399-402.
PDF(3109 KB)

Accesses

Citation

Detail

Sections
Recommended

/