Modeling and performance study of dual-port metal corrosion probes based on dual piezoelectric elements

WANG Yufan1, WANG Jianjun2, LAN Chengming1, LUO Mingzhang3

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (12) : 48-58.

PDF(2166 KB)
PDF(2166 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (12) : 48-58.
VIBRATION THEORY AND INTERDISCIPLINARY RESEARCH

Modeling and performance study of dual-port metal corrosion probes based on dual piezoelectric elements

  • WANG Yufan1,WANG Jianjun*2,LAN Chengming1,LUO Mingzhang3
Author information +
History +

Abstract

Piezoelectric smart metal corrosion sensors have already attracted much attention in pipeline corrosion monitoring, but most of them are in single output mode. The reliability of a single impedance signal is difficult to be effectively verified when facing complex and harsh corrosive environments. For this reason, a dual-port metal corrosion probe is designed based on electromechanical impedance technology and dual piezoelectric elements. The theoretical model of the probe under dual-port output was established, and the first resonance and anti-resonance frequencies were solved. The finite element simulation was used to verify the correctness of the theoretical model. In addition, artificial quantitative corrosion tests and wireless impedance measurement tests were carried out to investigate the quantitative corrosion monitoring performance of the probe as well as the online monitoring capability. The results show that the first resonance and anti-resonance frequencies of the dual-port output both increase with the decrease of the rod length, and the self-calibration function can be realized. The frequency values determined by the wireless impedance measurement system are in good agreement with the results of the traditional impedance analyzer. The research results provide a reference for the development of wireless self-calibration metal corrosion probes.

Cite this article

Download Citations
WANG Yufan1, WANG Jianjun2, LAN Chengming1, LUO Mingzhang3. Modeling and performance study of dual-port metal corrosion probes based on dual piezoelectric elements[J]. Journal of Vibration and Shock, 2025, 44(12): 48-58

References

[1] Yang D, Ji S, Wang T, et al. A pipeline corrosion detecting method using percussion and residual neural network [J]. Measurement Science and Technology, 2024, 35(8): 086009.
[2] Aryai V, Baji H, Mahmoodian M, et al. Time-dependent finite element reliability assessment of cast-iron water pipes subjected to spatio-temporal correlated corrosion process [J]. Reliability Engineering & System Safety, 2020, 197: 106802.
[3] Hou S, Zhang H, Yu S. Piezoceramic-based smart aggregates for seismic stress monitoring of RC building [C]//proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011, 2011, 7981: 79812N.
[4] 张海滨, 侯爽, 曾创烁, 等. 钢筋混凝土结构构件局部地震损伤多尺度监测方法 [J]. 防灾减灾工程学报, 2018, 38(01): 103-108.
        ZHANG Haibin, HOU Shuang, ZENG Chuangshuo, et al. Multi-scale monitoring method for local seismic damage of reinforced concrete structure members [J]. Journal of Disaster Prevention and Mitigation Engineering, 20181 38(01): 103-108.
[5] Zhang H, Hou S, Ou J. Feasibility of SA–based concrete seismic stress monitoring for high-strength concrete [J]. Journal of Intelligent Material Systems and Structures, 2017, 28(17): 2428-2436.
[6] Zhang H, Hou S, Ou J. SA-based concrete seismic stress monitoring: The influence of non-uniform stress fields [J]. Engineering Structures, 2019, 190: 66-75.
[7] Zhang H, Hou S, Ou J. SA-based concrete seismic stress monitoring: The effect of maximum aggregate size [J]. Journal of Building Engineering, 2024, 88: 109232.
[8] 张政, 王涛, 鲁光涛, 等. 基于压电阻抗技术的结构初始裂纹监测研究 [J]. 传感技术学报, 2019, 32(04): 631-636.
        ZHANG Zheng, WANG Tao, LU Guangtao, et al. Study on structure initial crack monitoring based on piezoelectric impedance technique [J]. Chinese Journal of Sensors and Actuators, 2019, 32(04): 631-636.
[9] 侯爽, 杨树森, 冷志鹏. 剪应力压电智能骨料标定方法研究 [J]. 防灾减灾工程学报, 2022, 42(04): 844-849.
        HOU Shuang, YANG Shusen, LENG Zhipeng. A calibration method of shear stress piezoelectric smart aggregate [J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(04): 844-849.
[10] 齐宝欣, 张雨, 李佳诺, 等. 基于压电传感器的混凝土损伤检测数值模拟 [J]. 压电与声光, 2018, 40(03): 442-447.
        QI Baoxin, ZHANG Yu, LI Jianuo, et al. Numerical simulation of concrete damage detection based on piezoelectric sensor [J]. Piezoelectrics & Acoustooptics, 2018, 40(03): 442-447.
[11] 江子航, 翟荃, 张继承, 等. 基于压电传感器的纤维陶粒混凝土冻融损伤检测 [J]. 科学技术与工程, 2024, 24(02): 576-583.
        JIANG Zihang, ZHAI Quan, ZHANG Jicheng, et al. Freezing-thawing damage detection of fiber ceramsite concrete based on piezoelectric sensors [J]. Science Technology and Engineering, 2024, 24(02): 576-583.
[12] 张明辉, 周德源, 何斌, 等. 基于嵌入式传感技术的混凝土结构概率损伤成像方法 [J]. 建筑结构学报, 2024, 45(06): 143-152.
        ZHANG Minghui, ZHOU Deyuan, HE Bin, et al. Probabilistic damage imaging approach of concrete structures based on embedded sensing technology [J]. Journal of Building Structures, 2024, 45(06): 143-152.
[13] Tan B, Wang T, Fang Q, et al. Bolt looseness monitoring using dynamic mode decomposition with piezoelectric active sensing [J]. Measurement, 2024, 238: 115204.
[14] Wang T, Wang H, Yang D, et al. Early bolt looseness monitoring using the leading waves energy in piezoelectric active sensing [J]. Smart Materials and Structures, 2024, 33(3): 035033.
[15] 周少杰, 廖明浩, 李湘明, 等. 基于机电阻抗法的套筒灌浆缺陷检测试验研究 [J]. 压电与声光, 2021, 43(06): 809-813.
        ZHOU Shaojie, LIAO Minghao, LI Xiangming, et al. Experimental study on grouting defect detection for grouted splice sleeve connector based on electro-mechanical impedance method [J]. Piezoelectrics & Acoustooptics, 2021, 43(06): 809-813.
[16] 庄志有, 许斌, 陈洪兵, 等. 基于外贴压电陶瓷的钢管砼界面剥离检测机理的数值模拟研究 [J]. 应用力学学报, 2019, 36(04): 951-957+1004.
        ZHUANG Zhiyou, XU Bin, CHEN Hongbing, et al. Numerical study on debonding detection mechanism for concrete filled steel tubular with external piezoceramic patches [J]. Chinese Journal of Applied Mechanics, 2019, 36(04): 951-957+1004.
[17] 刘洋, 冯新. 基于机电阻抗技术的不锈钢板均匀腐蚀监测方法研究 [J]. 振动与冲击, 2020, 39(12): 9-16.
        LIU Yang, FENG Xin. A study on the monitoring method of uniform corrosion of a stainless steel plate based on electromechanical impedance technique [J]. Journal of Vibration and Shock, 2020, 39(12): 9-16.
[18] 霍林生, 陈胜斌, 李荣荣, 等. 基于压电阻抗技术的阻尼液黏度监测方法 [J]. 压电与声光, 2021, 43(06): 805-808+813.
        HUO Linsheng, CHEN Shengbin, LI Rongrong, et al. Method of monitoring damping fluid viscosity based on piezoelectric impedance technology [J]. Piezoelectrics & Acoustooptics, 2021, 43(06): 805-808+813.
[19] 齐宝欣, 武一, 任庆新. 基于阵列布置PZT的钢筒混凝土管道损伤监测与评估数值模拟 [J]. 沈阳建筑大学学报(自然科学版), 2021, 37(06): 981-989.
        QI Baoxin, WU Yi, REN Qingxin. Numerical simulation of damage monitoring and evaluation of steel cylinder concrete pipes based on array layout PZT [J]. Journal of Shenyang Jianzhu University (Nature Science), 2021, 37(06): 981-989.
[20] 齐宝欣, 李佳诺, 钱辉, 等. 基于PZT-SLDV测试系统的纤维复合板损伤识别研究 [J]. 土木工程学报, 2020, 53(S2): 183-189.
        QI Baoxin, LI Jianuo, QIAN Hui, et al. Research on damage identification of fiber composite plate based on PZT-SLDV test system [J]. China Civil Engineering Journal, 2020, 53(S2): 183-189.
[21] 黎赫东, 艾德米, 朱宏平. 基于压缩感知理论重构压电阻抗信号的钢结构损伤识别 [J]. 建筑结构学报, 2022, 43(07): 230-238.
        LI Hedong, AI Demi, ZHU Hongping. Damage identification of steel structures based on reconstructed electromechanical impedance signals using compressed sensing theory [J]. Journal of Building Structures, 2022, 43(07): 230-238.
[22] 吴建超. 压电智能传感器在滑坡深部滑移监测中的试验研究 [D]. 北京: 中国地震局地球物理研究所, 2022.
[23] 刘增华, 曹瑾瑾, 吴斌, 等. 基于机电阻抗与超声导波综合技术的复合材料板损伤定位 [J]. 北京工业大学学报, 2018, 44(05): 699-707.
        LIU Zenghua, CAO Jinjin, WU Bin, et al. Damage location of composite plates using integrated technology based on electromechanical impedance and ultrasonic guided waves [J]. Journal of Beijing University of Technology, 2018, 44(05): 699-707.
[24] 张鑫, 孙小飞, 周文松, 等. 基于压电阻抗和主成分分析的斜拉索覆冰监测 [J]. 哈尔滨工程大学学报, 2020, 41(12): 1765-1771.
        ZHANG Xin, SUN Xiaofei, ZHOU Wensong, et al. Monitoring of stay-cable icing based on electro-mechanical impedance and principal component analysis [J]. Journal of Harbin Engineering University, 2020, 41(12): 1765-1771.
[25] 艾德米. 基于压电传感机械阻抗的结构损伤识别方法研究 [D]. 武汉: 华中科技大学, 2017.
[26] Jia S, Luo M. Monitoring of liquid viscosity for viscous dampers through a wireless impedance measurement system [J]. Applied Sciences, 2021, 12(1): 189.
[27] Lan C, Wang Y, Wang J, et al. Performance study of novel metal corrosion probes based on the adjust method of series and parallel connections [J]. Measurement Science and Technology, 2024, 35(9): 095102.
[28] Wang J, Wen L, Liu Z, et al. Design and performance evaluation of electromechanical impedance instrumented quantitative corrosion measuring probe based on conical rods [J]. Smart Materials and Structures, 2022, 31(12): 124001.
[29] Wang J, Li W, Lan C, et al. Electromechanical impedance instrumented piezoelectric ring for pipe corrosion and bearing wear monitoring: A proof-of-concept study [J]. Sensors and Actuators A: Physical, 2020, 315: 112276.
[30] Fu X, Li W, Li L, et al. Cloud-based pipe corrosion monitoring using electromechanical impedance instrumented piezoelectric ring sensor [J]. Automation in Construction, 2023, 156: 105124.
[31] 王建军, 刘鸿辉, 曹亚雷, 等. 基于压电筒状叠堆的无线金属腐蚀探针设计及性能研究 [J]. 振动与冲击, 2024, 43(08): 19-33.
        WANG Jianjun, LIU Honghui, CAO Yalei, et al. Design and performance study of wireless metal corrosion probes using piezoelectric tube stack [J]. Journal of Vibration and Shock, 2024, 43(08): 19-33.
[32] Li W, Liu T, Gao S, et al. An electromechanical impedance-instrumented corrosion-measuring probe [J]. Journal of Intelligent Material Systems and Structures, 2019, 30(14): 2135-2146: 1045389X19861776.
[33] Xu H, Wen L, Wang J, et al. Modeling and electromechanical performance of improved smart aggregates using piezoelectric stacks [J]. Journal of Physics D: Applied Physics, 2023, 56(5): 054002.
[34] Li W, Liu T, Wang J, et al. Finite-element analysis of an electromechanical impedance–based corrosion sensor with experimental verification [J]. Journal of Aerospace Engineering, 2019, 32(3): 04019012.
[35] Li W, Wang J, Liu T, et al. Electromechanical impedance instrumented circular piezoelectric-metal transducer for corrosion monitoring: modeling and validation [J]. Smart Materials and Structures, 2020, 29(3): 035008.
[36] Wang J, Li W, Luo W, et al. Modeling and experimental validation of a quantitative bar-type corrosion measuring probe using piezoelectric stack and electromechanical impedance technique [J]. Measurement, 2022, 188: 110546.
[37] 胡洪平. 低频压电俘能器研究 [D]. 武汉: 华中科技大学, 2006.
[38] Liang C, Sun F P, Rogers C A. An impedance method for dynamic analysis of active material systems [J]. Journal of Intelligent Material Systems and Structures, 1997, 8(4): 323-334.
[39] Liang C, Sun F P, Rogers C A. Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer [J]. Journal of Intelligent Material Systems and Structures, 1997, 8(4): 335-343.
[40] Lan C, Liu H, Zhuang S, et al. Monitoring of crack repair in concrete using spherical smart aggregates based on electromechanical impedance (EMI) technique [J]. Smart Materials and Structures, 2024, 33(2): 025031.
[41] 周明乐, 李友荣, 鲁光涛, 等. 叠加式压电陶瓷智能骨料特性仿真研究 [J]. 武汉科技大学学报, 2018, 41(05): 359-364.
        ZHOU Mingle, LI Yourong, LU Guangtao, et al. Characterization of PZT-stacked smart aggregates by numerical simulation [J]. Journal of Wuhan University of Science and Technology, 2018, 41(05): 359-364.
[42] 张彤, 孟庆元, 王富耻. 层合结构压电器件的机电耦合响应 [J]. 计算力学学报, 2005, (02): 237-241.
        ZHANG Tong, MENG Qingyuan, WANG Fuchi. Electromechanical coupling effects of piezoelectric laminated devices [J]. Chinese Journal of Computational Mechanics, 2005, (02): 237-241.
PDF(2166 KB)

108

Accesses

0

Citation

Detail

Sections
Recommended

/