Evolution mechanism of the dynamic coal-rock breaking effect of an annular fluid self-excited pulsed jet

LIU Yanwei1, ZHANG Shixi1, ZUO Weiqin1, JIA Haojie1, HAN Hongkai1, MIAO Jian1, 2, LONG Liqun1

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (14) : 103-113.

PDF(2779 KB)
PDF(2779 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (14) : 103-113.
SHOCK

Evolution mechanism of the dynamic coal-rock breaking effect of an annular fluid self-excited pulsed jet

  • LIU Yanwei1,ZHANG Shixi1,ZUO Weiqin*1,JIA Haojie1,HAN Hongkai1,MIAO Jian1,2,LONG Liqun1
Author information +
History +

Abstract

In order to explore the dynamic process of self-excited pulsed fluid jets in annulus breaking coal and rock, the smoothed particle hydrodynamics-finite element method algorithm was used to establish a numerical calculation model of self-excited pulsed fluid jets impacting coal and rock under submerged conditions. The accuracy of the model was verified through theoretical analysis and experimental comparison. The effects of confining pressure, pump pressure and jet type on rock-breaking efficiency were discussed, and the damage mechanism and stress propagation laws during erosion of coal and rock were studied. The results show that under different confining pressures, the erosion depth of the self-priming pulsed jet is significantly increased compared with the self-excited pulsed jet and the ordinary jet, indicating that the self-priming pulsed jet can better break the water cushion effect to a certain extent. When the confining pressure increases from 0MPa to 0.4 MPa, the depth and volume of the erosion pits of self-priming pulsed jet decrease linearly. The depth of the erosion pits decreases by 36.36%, and the volume of the erosion pits decreases by 17.18%. The depth and volume of the erosion pits increase linearly with the increase of pump pressure. In the range of 2 to 8MPa, the depth of the erosion pits increases by 650% and the volume of the erosion pits increases by 847.86%. In the range of 8 to 12MPa, the depth of the erosion pits increases by 23.33% and the volume of the erosion pits increases by 41.92%. Through the laws of coal and rock damage and stress propagation during the erosion process, it is found that along the radial direction, from the center of coal and rock impact to the distal end, the degree of damage and effective stress gradually decreases and tends to be stable, with a certain limit range; along the axial direction, the rapid accumulation of damage and effective stress at the measuring points reaches the peak one after another, and the coal and rock units quickly accumulate to complete damage, forming erosion pits.

Key words

Annular fluid / erosion of coal / Water cushion effect / Stress damage evolution

Cite this article

Download Citations
LIU Yanwei1, ZHANG Shixi1, ZUO Weiqin1, JIA Haojie1, HAN Hongkai1, MIAO Jian1, 2, LONG Liqun1. Evolution mechanism of the dynamic coal-rock breaking effect of an annular fluid self-excited pulsed jet[J]. Journal of Vibration and Shock, 2025, 44(14): 103-113

References

[1] 刘彦伟, 贾浩杰, 左伟芹, 等. 基于有效分子自由程的纳米孔隙气体传输模型[J]. 中国矿业大学学报, 2022, 51(01): 90-99.
LIU Yanwei, JIA Haojie, ZUO Weiqin. A model for gas transport through nanopores based on effective molecular free path[J]. Journal of China University of Mining & Technology, 2022, 51(01): 90-99.
[2] 王恩元, 汪皓, 刘晓斐, 等. 水力冲孔孔洞周围煤体地应力和瓦斯时空演化规律[J]. 煤炭科学技术, 2020, 48(01): 39-45.
WANG Enyuan, WANG Hao, LIU Xiaofei. Spatio temporal evolution of geostress and gas field around hydraulic punching borehole in coal seam[J]. Coal Science and Technology, 2020, 48(01): 39-45.
[3] 程小庆, 王兆丰. 水力冲孔卸煤量对增透效果的影响[J]. 煤矿安全, 2018, 49(04): 148-151.
CHENG Xiaoqing, WANG Zhaofeng. Influence of Hydraulic Punching Coal Unloading Amount on Permeability Improvement[J]. Safety in Coal Mines, 2018, 49(04): 148-151.
[4] 闫发志, 朱传杰, 郭畅, 等. 割缝与压裂协同增透技术参数数值模拟与试验[J]. 煤炭学报, 2015, 40(04): 823-829.
YAN Fazhi, ZHU Chuanjie, GUO Chang. Numerical simulation parameters and test of cutting and fracturing collaboration permeability-increasing technology [J]. Journal of China Coal Society, 2015, 40(04): 823-829.
[5] 王婕, 林柏泉, 茹阿鹏. 割缝排放低透气性煤层瓦斯过程的数值试验[J]. 煤矿安全, 2005(08): 4-7.
WANG Jie, LIN Baiquan, RU Apeng. Numerical Test of Gas Drainage in Low Air Permeability Coal Seam by Rifting Slots[J]. Safety in Coal Mines, 2005(08): 4-7.
[6] 袁亮, 林柏泉, 杨威. 我国煤矿水力化技术瓦斯治理研究进展及发展方向[J]. 煤炭科学技术, 2015, 43(01): 45-49.
YUAN Liang, LIN Baiquan, YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology, 2015, 43(01): 45-49.
[7] 孙炳兴, 王兆丰, 伍厚荣. 水力压裂增透技术在瓦斯抽采中的应用[J]. 煤炭科学技术, 2010, 38(11): 78-80+119.
SUN Bingxing, WANG Zhaofeng, WU Hourong. Hydraulic Pressurized Cracking and Permeability Improvement Technology Applied to Gas Drainage[J]. Coal Science and Technology, 2010, 38(11): 78-80+119.
[8] 左伟芹, 李运强, 刘彦伟, 等. 下向钻孔水渣输运机制与高效抽采试验研究[J]. 河南理工大学学报(自然科学版). 2023. 42(02): 19-26.
ZUO Weiqin, LI Yunqiang, LIU Yanwei. Experimental study on water and slag transportation mechanism and high efficiency extraction in downward boreholes[J]. Journal of Henan Polytechnic University(Natural Science), 2023, 42(02): 19-26.
[9] 童碧, 王力. 下向穿层孔水力割缝施工工艺研究与应用[J]. 煤炭科学技术, 2017. 45(08): 177-180+188.
TONG Bi, WANG Li. Study and application of hydraulic slotting construction technique with downward passed through strata borehole[J]. Coal Science and Technology, 2017, 45(08): 177-180+188.
[10] 李晓红, 赵瑜, 卢义玉, 等. 自激振荡射流改善松软煤层渗透率的机理[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(S1): 202-205.
LI Xiaohong, ZHAO Yu, LU Yiyu, et al. Improving the penetrability of soft coal seam with self-excited oscillation water jet[J]. Journal of Liaoning Technical University(Natural Science), 2009, 2828(S1): 202-205.
[11] 王希勇, 熊继有, 孙文涛, 等. 新型水力增压实验研究[J]. 西南石油学院学报, 2002, 24(3): 71−73.
WANG Xiyong, XIONG Jiyou, SUN Wentao, et al. Experimental study of new-type device hydraulic increasing pressure by itself[J].Journal of Southwest Petroleum Institute, 2002, 24(3): 71-73.
[12] 王希勇, 熊继有, 张艺瀚. 新型水力增压理论研究[J]. 天然气工业, 2002, 22(5): 58−61.
WANG Xiyong, XIONG Jiyou, ZHANG Yihan, et al. Theoritical study of novel hydraulic pressurizing device[J]. Natural Gas Industry, 2002, 22(5): 58-61.
[13] 熊继有, 付建红. 井下增压研究新进展[J]. 天然气工业, 2003, 23(6): 91−93.
XIONG Jiyou, FU Jianhong. New progress of down-hole boosting research[J]. Natural Gas Industry, 2003, 23(6): 91-93
[14] Ma GW, Wang XJ, Ren F. Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48 (3): 353-363.
[15] 林晓东, 卢义玉, 汤积仁,等. 基于SPH-FEM耦合算法的磨料水射流破岩数值模拟[J]. 振动与冲击, 2014, 33(18): 170-176.
LIN Xiaodong, LU Yiyu, TANG Jiren, et al. Numerical simulation of abrasive water jet breaking rock with SPH-FEM coupling algorithm[J]. Journal of Vibration and Shock, 2014, 33(18): 170-176.
[16] 江红祥, 杜长龙, 刘送永, 等. 高压水射流冲击破岩损伤场分析[J]. 中南大学学报(自然科学版), 2015, 46(1): 287-294.
JIANG Hongxiang, DU Changlong, LIU Songyong, et al. Numerical analysis on damage field of rock fragmentation with water jet[J]. Journal of Central South University(Science and Technology), 2015, 46(1): 287-294.
[17] 司鹄, 薛永志. 基于SPH算法的脉冲射流破岩应力波效应数值分析[J]. 振动与冲击, 2016, 35(5): 146-152.
SI Hu, XUE Yongzhi. Numerical analysis for stress wave effects of rock broken under pulse jets[J]. Journal of Vibration and Shock, 2016, 35(5): 146-152.
[18] XUE Y, SI H, HU Q. The propagation of stress waves in rock impacted by a pulsed water jet[J]. Powder Technology, 2017, 320: 179-190. 
[19] 薛永志. 高压水射流冲击下煤岩损伤诱导机制及分布特性研究[D]. 重庆: 重庆大学, 2018.
[20] WANG F, WANG R, ZHOU W, et al. Numerical simulation and experimental verification of the rock damage field under particle water jet impacting[J]. International Journal of Impact Engineering, 2017, 102: 169-179. 
[21] LI L, WANG F, LI T, et al. The effects of inclined particle water jet on rock failure mechanism: Experimental and numerical study[J]. Journal of Petroleum Science and Engineering, 2020, 185: 106639.
[22] LI H, LIU S, JIA J, et al. Numerical simulation of rock-breaking under the impact load of self-excited oscillating pulsed waterjet[J]. Tunnelling and Underground Space Technology, 2020, 96: 103179.
[23] REN F, FANG T, CHENG X. Study on Rock Damage and Failure Depth under Particle Water-jet Coupling Impact[J]. International Journal of Impact Engineering, 2020, 139: 103504.
[24] 潘越, 杨帆, 张泽鹏, 等.截断式脉冲水射流冲蚀煤岩特性数值模拟[J]. 振动与冲击, 2021, 40(06): 283-288.
PAN Yue, YANG Fan, ZHANG Zepeng, et al. Numerical simulation of coal rock fragmentation characteristics under interrupted pulse water jet[J]. Journal of Vibration and Shock, 2021, 40(06): 283-288.
[25] 沈逸飞, 许慎, 冯培云, 等.围压作用下水射流破岩损伤机理的数值模拟研究[J]. 煤矿安全, 2022, 53(02): 59-65.
SHEN Yifei, XU Shen, FENG Peiyun, et al. Numerical simulation of rock damage mechanism by water jet under confining pressure[J]. Safety in Coal Mines, 2022, 53(02): 59-65.
[26] 郝从猛, 陈学习, 刘清泉, 等.基于ALE算法的连续水射流破煤特征数值模拟研究[J]. 煤矿安全, 2024, 55(01): 14-21.
HAO Congmeng, CHEN Xuexi, LIU Qingquan, et al. Numerical simulation of coal breaking characteristics by continuous water jet based on ALE algorithm[J]. Safety in Coal Mines, 2024, 55(01): 14-21.
[27] 刘彦伟, 龙丽群, 左伟芹, 等.环空流体强化自激脉冲淹没水射流调制与破煤特性[J]. 煤炭学报, 2023, 48(09): 3393-3404.
LIU Yanwei, LONG Liqun, ZUO Weiqin. breaking characteristics Modulation of annular fluid enhanced self-excited pulsed water jet and its coal[J]. Journal of China Coal Society, 2023, 48(09): 3393-3404.
[28] 苗健. 环空自吸式脉冲水射流流场特性与冲击性能研究[D]. 河南: 河南理工大学, 2024.
[29] 邱薛, 刘晓辉, 胡安奎, 等. 煤岩动态RHT本构模型数值模拟研究[J]. 煤炭学报, 2024, 49(S1): 261-273.
QIU Xue, LIU Xiaohui, HU Ankui, et al. Research on numerical simulation of coal dynamic RHT constitutive model[J]. Journal of China Coal Society, 2024, 49(S1): 261-273.
[30] 李洪超, 陈勇, 刘殿书, 等. 岩石RHT模型主要参数敏感性及确定方法研究[J]. 北京理工大学学报, 2018, 38(08): 779-785.
LI Hongchao , CHEN Yong , LIU Dianshu , et al. Sensitivity Analysis Determination and Optimization of Rock RHT Parameters[J]. Transactions of Beijing Institute of Technology, 2018 , 38(08): 779-785.
[31] 饶军应, 薛炀皓, 沈阳, 等. 基于RHT模型的层理分布与爆破损伤关联耦合性分析[J]. 中南大学学报(自然科学版), 2023, 54(03): 1204-1218.
RAO Junying , XUE Yanghao , SHEN Yang , et al. Analysis of correlation coupling between bedding distribution and blasting damage based on RHT model[J]. Journal of Central South University(Science and Technology), 2023, 54(03): 1204-1218.
[32] 贺振国, 李根生, 石李保, 等.围压对超临界二氧化碳射流冲击力与冲蚀射孔的影响[J]. 振动与冲击, 2017, 36(2): 65-71.
HE Zhenguo, LI Gensheng, SHI Libao, et al. Effects of ambient pressure on the impinging pressure and rock erosion performance of supercritical CO2 jet[J]. Journal of Vibration and Shock, 2017, 36(2): 65-71.
[33] 李敬彬, 李根生, 黄中伟, 等.围压对高压水射流冲击压力影响规律[J]. 实验流体力学, 2017, 31(2): 67-72.
LI Jingbing, LI Gensheng, HUANG Zhongwei, et al. Effect of confining pressure on the axial impact pressure of hydraulic jetting[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 67-72.
[34] 左伟芹, 武圣杰, 刘彦伟, 等. 自吸环空流体式自激脉冲射流打击力时频特性试验研究[J/OL]. 煤炭科学技术,2024: 1-12[2024-08-05].
ZUO Weiqin, WU Shengjie, LIU Yanwei, et al. Experimental study on the time-frequency characteristics of self-excited pulsed jet striking force in self-absorbing annular-air fluid type[J/OL]. Coal Science and Technology:2024: 1-12[2024-08-05].
[35] 黄飞, 卢义玉, 李树清, 等. 高压水射流冲击速度对砂岩破坏模式的影响研究[J]. 岩石力学与工程学报, 2016, 35(11): 2259-2265.
HUANG Fei, LU Yiyu, LI Shuqing, et al. Influence of velocity of high-pressure water jet on failure patterns of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2259-2265.
[36] LU YY, HUANG F, LIU XC, et al. On the failure pattern of sandstone impacted by high-velocity water jet[J]. International Journal of Impact Engineering, 2015, 76: 67-74.
PDF(2779 KB)

Accesses

Citation

Detail

Sections
Recommended

/