Numerical simulation on the impact resistance of RC columns protected by PU foam under impact load

HE Qingfeng, ZHANG Junfeng, YI Fan, TANG Zhilong

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (14) : 120-131.

PDF(3320 KB)
PDF(3320 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (14) : 120-131.
SHOCK

Numerical simulation on the impact resistance of RC columns protected by PU foam under impact load

  • HE Qingfeng*,ZHANG Junfeng,YI Fan,TANG Zhilong
Author information +
History +

Abstract

The cushioning foam structure protection measures exhibit excellent protective effects. To investigate the energy dissipation effect and impact resistance mechanism of the reinforced concrete (RC) columns designed for protection during collisions,This paper is based on the pendulum impact test data, numerical simulations are conducted using LS-DYNA to analyze the dynamic response and failure modes of reinforced concrete (RC) columns under impact loading, and the effectiveness of the numerical model is validated. The study investigates the impact resistance of RC columns with three different protective measures: unprotected, polyurethane (PU) foam protection, and a composite protection using wire mesh and mortar. The results indicate that both protective measures significantly enhance the impact performance of the RC columns. Under pendulum impact loading, the wire mesh-mortar composite with PU foam demonstrates excellent impact resistance. Specifically, compared to PU foam protection alone, incorporating wire mesh with composite mortar on the outer layer of PU foam reduces the peak impact force and displacement by approximately 20% and 25%, respectively, at the same protective thickness. The columns  demonstrate enhanced impact resistance at various impact velocities, and increasing the thickness and density of the cushioning layer effectively improves the impact resistance of the RC columns.

Key words

pendulum impact test / polyurethane foam / protective measure / impact resistance / energy dissipation

Cite this article

Download Citations
HE Qingfeng, ZHANG Junfeng, YI Fan, TANG Zhilong. Numerical simulation on the impact resistance of RC columns protected by PU foam under impact load[J]. Journal of Vibration and Shock, 2025, 44(14): 120-131

References

[1] XIE Ruihong,FAN Wei,LIU Bin, et al.Dynamic behavior and vulnerability analysis of bridge columns with different cross-sectional shapes under rockfall impacts[J].Structures,2020,26471-486.
[2] 周晓宇,马如进,陈艾荣.钢筋混凝土柱式墩落石冲击抗剪性能可靠性分析[J].振动与冲击,2017,36(07):262-270.DOI:10.13465/j.cnki.jvs.2017.07.039.
ZHOU Xiaoyu, MA Rujin, CHEN Airong. Anti-shear reliability analysis for a reinforced concrete column subjected to rockfall impact [J]. Journal of Vibration and Shock,2017,36(07):262-270.DOI:10.13465/j.cnki.jvs.2017.07.039.
[3] CHEN Taijiang,ZHANG Guangcheng,XIANG Xin.Research on rockfall impact process based on viscoelastic contact theory[J].International Journal of Impact Engineering,2023,173.
[4] ZHAO Wuchao, LI Weiqiang, FENG Huida, et al.Residual performance of hollow RC piers damaged by rockfall impact[J].Structures,2024,59105726-.
[5] ZHANG Xun,WANG Xiyang,CHEN Wensu, et al.Numerical study of rockfall impact on bridge piers and its effect on the safe operation of high-speed trains[J].Structure and Infrastructure Engineering,2021,17(1):1-19.
[6] ZENG Chao,CUI Peng,SU Zhiman, et al.Failure modes of reinforced concrete columns of buildings under debris flow impact[J].Landslides,2015,12(3):561-571.
[7] YAN Shuaixing,HE Siming,DENG Yu, et al.A reliability-based approach for the impact vulnerability assessment of bridge piers subjected to debris flows[J].Engineering Geology,2019,269(prepublish):105567-105567.
[8] TANG Hao,XIA Chaoyi,WANG Kunpeng,JIANG Jinghui & XIA He.(2024).Reliability-based vulnerability analysis of bridge pier subjected to debris flow impact.Structure and Infrastructure Engineering(1),1-12.
[9] 师燕超,李忠献.爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式[J].建筑结构学报,2008,(04):112-117.DOI:10.14006/j.jzjgxb.2008.04.017.
SHI Yanchao,LI Zhongxian. Dynamic responses and failure modes of RC colmns under blast loading[J].Journal of Building Structures,2008,(4):112-117.DOI:10.14006/j.jZJGXB. 2008.04.017.
[10] WANG J ,YIN J ,LI X , et al.Construction of a Dimensional Damage Model of Reinforced Concrete Columns under Explosion Loading[J].Applied Sciences,2024,14(9):.
[11] LIN Shuchao,HU Zhiqiang,HAN Jianqiang,YANG Bo & Elchalakani Mohamed.(2023).Failure time of reinforced concrete column under blast load.Structures1122-1134.
[12] SHI Yanchao,HU Ye,CHEN Li, et al.Experimental investigation into the close-in blast performance of RC columns with axial loading[J].Engineering Structures,2022,268 .
[13] ZHU Xiang,ZHAO Pengju,TIAN Yuan, et al.Experimental study of RC columns and composite columns under low-velocity impact[J].Thin-Walled Structures,2021,160.
[14] Partheepan Ganesan;B. Ramsagar.Finite-element simulation of vehicle impact on a column in a reinforced concrete-framed structure[J].Asian Journal of Civil Engineering,2021,Vol.22(3): 579-588.
[15] Sohel K ,Al-Jabri K ,Abri A A .Behavior and design of reinforced concrete building columns subjected to low-velocity car impact[J].Structures,2020,26601-616.
[16] CAI Jian,YE Jiabin,CHEN Qingjun, et al.Dynamic behaviour of axially-loaded RC columns under horizontal impact loading[J].Engineering Structures,2018,168684-697.
[17] LIU Baodong,YANG Shuzhen,LI Weilong, et al.Damping dissipation properties of rubberized concrete and its application in anti-collision of bridge piers[J].Construction and Building Materials,2020,236117286-117286.
[18] ZHANG Yuye,PAN Ruiyang,and XIAO Feng."Numerical research on impact performance of bridge columns with aluminum foam protection devices."International Journal of Distributed Sensor Networks 16.11(2020):1550147720974538-1550147720974538.
[19] FAN Wei,YUAN Wanchen,CHEN Baisheng .Steel Fender Limitations and Improvements for Bridge Protection in Ship Collisions[J].Journal of Bridge Engineering,2015,20(12):06015004-06015004.
[20] FAN Wei,SHENG Dongjie,ZHANG Zhiyong, et al.A novel UHPFRC-based protective structure for bridge columns against vehicle collisions: Experiment, simulation, and optimization[J].Engineering Structures,2020,207(C):110247-110247.
[21] PAN Jin,FANG Han ,WU Yafeng, et al.Study on the performance of energy absorption structure of bridge piers against vehicle collision[J].Thin-Walled Structures,2018,13085-100.
[22] 韩伟,方海,祝露,等.蜂窝与梯形格构腹板增强泡沫夹芯复合材料防撞装置吸能特性[J].振动与冲击,2023,42(12):236-248.DOI:10.13465/j.cnki.jvs.2023.012.027.
HAN Wei, FANG Hai, ZHU Lu, et al. Energy absorption behavior of an anti-collision device with foam -filled sandwich composite materials reinforced by honeycomb and trapezoidal lattice webs [J]. Journal of Vibration and Shock,2023,42(12):236-248.DOI:10.13465/j.cnki.jvs.2023.012.027.
[23] Mohammad A ,Tatheer Z ,P. D T , et al.Geometrically modified auxetic polyurethane foams and their potential application in impact mitigation of masonry structures[J].Construction and Building Materials,2021,311.
[24] SUN Yigang ,DENG Yao ,DENG Yunfei .Low-velocity impact failure of foam-filled GFRP trapezoidal corrugated sandwich structures[J].Engineering Fracture Mechanics,2024,298109952-.
[25] WEI Jie ,LI Jun ,WU Chengqing .An experimental and numerical study of reinforced conventional concrete and ultra-high performance concrete columns under lateral impact loads[J].Engineering Structures,2019,201(C):109822-109822.
[26] JIA P C,WU H ,PENG Q , et al.Dynamic behaviors of eccentrically loaded RC column under lateral low-velocity impact[J].Engineering Structures,2024,309118031-.
[27] LIU Bin ,FAN Wei ,GUO Wei , et al.Experimental investigation and improved FE modeling of axially-loaded circular RC columns under lateral impact loading[J].Engineering Structures,2017,152619-642.
[28] 刘飞,罗旗帜,严波,等.RC柱侧向冲击破坏模式的数值模拟研究[J].振动与冲击,2017,36(16):122-127.DOI:10.13465/j.cnki.jvs.2017.16.019.
LIU Fei, LUO Qizhi, YAN Bo, et al. Numerical study on the failure mode of RC column subjected to lateral impact [J]. Journal of Vibration and Shock,2017,36(16):122-127.DOI:10.13465/j.cnki.jvs.2017.16.019.
[29] LI Huawei,CHEN Wensu,M. T P , et al.Analytical and numerical studies on impact force profile of RC beam under drop weight impact[J].International Journal of Impact Engineering,2021,147103743-.
[30] Margarida M ,Pedro M ,Paulo F , et al.Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory[J].Mechanism and Machine Theory,2012,5399-121.
[31] 陈林,曾玉烨,颜泽峰,等.车辆撞击下钢筋混凝土桥墩的动力响应及损伤特征[J].振动与冲击,2019,38(13):261-267+273.DOI:10.13465/j.cnki.jvs.2019.13.037.
CHEN Lin, ZENG Yuye, YAN Zefeng, et al. Dynamie response and damage characteristies of a RC pier under vehicle impacting [J]. Journal of Vibration and Shock,2019,38(13):261-267+273.DOI:10.13465/j.cnki.jvs.2019.13.037.
[32] SUN JingMing,YI WeiJian,CHEN Hui, et al.Dynamic Responses of RC Columns under Axial Load and Lateral Impact[J].Journal of Structural Engineering,2023,149(1):.
[33] ZHAO Debo, WEN Yunmu , SUN Jingming , et al.Lateral-Impact Behavior of Axially Preloaded RC Columns Strengthened with Large-Rupture-Strain FRP Wraps[J].Journal of Composites for Construction,2024,28(3):.
[34] Hu Bo ,Wang Haibo .Performance evaluation and FRP strengthening of concrete-filled steel tubular columns subjected to vehicle impact[J].Advances in Structural Engineering,2024,27(8):1377-1396.
[35] 湖 南 大 学.水泥复合砂浆钢筋网加固混凝土结构技术规程:CECS 242—2008[S].北京:中国计划出版社,2016.
[36] CHEN Jiye ,FANG Hai ,LIU Weiqing , et al. Energy absorption of foam-filled multi-cell composite panels under quasi-static compression[J].Composites Part B,2018,153295-305.
[37] 田力,王若晨.爆炸波与破片联合作用下砌块墙的损伤和防护[J].同济大学学报(自然科学版),2019,47(11):1557-1564.
TIAN Li, WANG Ruochen. Damage and Protection of Block Filled Wall Subjected to Synergistie Effeets of Blast and Prefabricated Fragments [J]. Journal of Tongji University(Natural Science),2019,47(11):1557-1564.
[38] 刘思明,崔堃鹏,夏禾,等.基于LS-DYNA的车辆对桥墩撞击力仿真分析[J].铁道标准设计,2013,(08):70-74.DOI:10.13238/j.issn.1004-2954.2013.08.028.
LIU Siming, CUI Kunpeng, XIA He, et al. Dynamic Simulation Analysis Based on LS DYNA about Impact Force on Bridge Pier Caused by Vehicle [J]. Railway Standard Design,2013,(08):70-74.DOI:10.13238/j.issn.1004-2954.2013.08.028.
PDF(3320 KB)

105

Accesses

0

Citation

Detail

Sections
Recommended

/