Adaptive composite control method for the vibration of a space deployable cable-net antenna

SU Peng1, 2, LIU Lei1, 2, YANG Zhenglin1, 2, LI Qing1, 2, WANG Hui3

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (14) : 220-228.

PDF(3114 KB)
PDF(3114 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (14) : 220-228.
AERONAUTICS AND ASTRONAUTICS

Adaptive composite control method for the vibration of a space deployable cable-net antenna

  • SU Peng1,2,LIU Lei*1,2,YANG Zhenglin1,2,LI Qing1,2,WANG Hui3
Author information +
History +

Abstract

To suppress the structural vibration caused by external excitations during the service period of a space deployable cable-net antenna, an adaptive composite control method is proposed to accurately control the antenna structural vibration with high gain. First, a dynamic model of the cable-network antenna is established using multiple parallel active cables as actuators. Then, an adaptive composite controller is designed by integrating proportional-integral-differential(PID) control and Filtered-x Least Mean Square (FxLMS) control. High control gain is provided through multiple independent narrowband adaptive sub-controllers based on the main vibration frequency of the antenna structure., improving the problem of insufficient gain of PID control for frequency vibration control. Finally, simulation test verification research is carried out with the goal of active radial vibration control of antenna structures. Simulation and experimental results show that the adaptive composite control method has good control performance, and verify the efficient control ability of the adaptive composite control method to antenna structure vibration. The designed control method provides an effective technical means for active vibration control of antenna structures.

Key words

Cable-net antenna / Active vibration control / Composite control / Adaptive control / Cable actuator

Cite this article

Download Citations
SU Peng1, 2, LIU Lei1, 2, YANG Zhenglin1, 2, LI Qing1, 2, WANG Hui3. Adaptive composite control method for the vibration of a space deployable cable-net antenna[J]. Journal of Vibration and Shock, 2025, 44(14): 220-228

References

[1] Yuan P F, He B Y, Zhang L H, et al. Pretension modeling and form-finding for cable-network antennas with varying topologies and parameters[J]. Aerospace Science and Technology, 2021, 112: 106631.
[2] Ma X F, Li T J, Ma J Y, et al. Recent advances in space-deployable structures in China[J]. Engineering, 2022, 17: 207-219.
[3] Hasanzade V, Sedighy S H, Shahravi M. Compact deployable umbrella antenna design with optimum communication properties[J]. Journal of Spacecraft and Rockets, 2017, 54(3): 782-788.
[4] Liang W, Geng Y D, Huang J, et al. Vibration reduction control by a cable actuation system for reflector antenna[J]. Journal of Vibration and Control, 2023, 29(11-12): 2893-2902.
[5] 廉荫虎, 倪崇, 李博韬, 等. 大型索网反射面天线空间动力学分析[J]. 电子机械工程, 2021, 37(02): 5-8.
LIAN Yinhu, NI Chong, LI Botao, et al. Spatial dynamic analysis of large-scale cable net reflector antenna[J]. Electro-Mechanical Engineering, 2021, 37(02):5-8.
[6] Zhou F, Sun J L, Han M C, et al. Research on the influence of mechanical vibration on radio wave propagation[J]. IEEE Access, 2023, 11: 111936-111943.
[7] 陈国辉, 王波, 华岳, 等. 嫦娥四号中继星伞状可展开天线关键技术研究[J]. 中国科学: 技术科学, 2019, 49(02): 166-174.
CHEN Guohui, WANG Bo, HUA Yue, et al. The key technologies for radial rib deployable antenna of Chang'e-4 relay satellite[J]. SCIENTIA SINICA Technologica, 2019, 49(2): 166-174.
[8] 王嘉登, 刘冲, 薛景赛, 等. 航天器展开机构转动阻尼器仿真分析与试验研究[J]. 振动与冲击, 2023, 42(13): 310-315.
WANG Jiadeng, LIU Chong, XUE Jingsai, et al. Simulation analysis and tests of rotating damper for spacecraft deployment mechanism[J]. Journal of Vibration and Shock, 2023, 42(13): 310-315.
[9] Yan B, Wang K, Kang C X, et al. Self-sensing electromagnetic transducer for vibration control of space antenna reflector[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 1944-1951. 
[10] 宋祥帅. 星载天线反射器高精度形面主动控制方法与实验研究[D]. 大连理工大学, 2021.
SONG Xiangshuai. Active shape control of high-precision space-borne antenna reflectors with experiment investigation[D]. Dalian: Dalian University of Technology, 2021.
[11] Angeletti F, Iannelli P, Gasbarri P, et al. End-to-end design of a robust attitude control and vibration suppression system for large space smart structures[J]. Acta Astronautica, 2021, 187: 416-428.
[12] Ma G L, Xu M L, Liu T, et al. The multi-body analysis and vibration control of the second-order mode of a hoop flexible structure[J]. Acta Mechanica, 2019, 230(4): 1377-1386. 
[13] Liu W, Li D X. Placement optimization of smart piezoelectric rods for shape control of large cable-network antenna structures[J]. Advanced Materials Research, 2013, 705: 602-608.
[14] 李波. 空间索网-框架结构动力学谱元法建模与振动控制方法[D]. 西安电子科技大学, 2022. 
Li Bo. Dynamic modeling and vibration control of space cable net-frame structures based on spectral element method[D]. Xi'an: Xidian University, 2021.
[15] 马国亮, 马小飞, 徐明龙, 等. 环形天线结构点头模态的T-S型模糊控制[J]. 振动工程学报, 2023, 36(6): 1572-1578.
MA Guoliang, MA Xiaofei, XU Minglong, et al. T-S fuzzy control of nod mode of a hoop antenna structure[J]. Journal of Vibration Engineering, 2023, 36(6): 1572-1578.
[16] Lu G Y, Zhou J Y, Cai G P, et al. Active vibration control of a large space antenna structure using cable actuator[J]. AIAA Journal, 2021, 59(4): 1457-1468.
[17] Qiu D, Sun M, Wang Z, et al. Practical wind-disturbance rejection for large deep space observatory antenna[J]. IEEE Transactions on Control Systems Technology, 2014, 22(5): 1983-1990.
[18] 徐杰. 基于深度强化学习的大型空间薄膜结构非线性振动控制方法[D]. 哈尔滨工业大学, 2020.
XU Jie. Nonlinear vibration control of large space membrane structure based on deep reinforcement learning[D]. Harbin: Harbin Institute of Technology, 2020.
[19] 钟灿, 黄振, 李旺, 等. 精密平台磁敏智能隔振系统自适应PI控制研究[J]. 振动与冲击, 2024, 43(08): 232-237.
ZHONG Can, HUANG Zhen, LI Wang, et al. Adaptive PI control research for precision platform magnetic-sensitive intelligent vibration isolation system[J]. Journal of Vibration and Shock, 2024, 43(08): 232-237.
[20] 白亮, 冯蕴雯, 薛小锋. 压电智能结构振动的一致性PID(CPID)控制[J]. 振动与冲击, 2017, 36(22): 192-198.
BAI Liang, FENG Yunwen, XUE Xiaofeng. A consensus PID(CPID) control algorithm for vibration control of piezoelectric smart structures[J]. Journal of Vibration and Shock, 2017, 36(22): 192-198.
[21] Fereidooni A, Graham S, Chen E, et al. Numerical and experimental investigation of a single-axis parallel active  
PDF(3114 KB)

115

Accesses

0

Citation

Detail

Sections
Recommended

/