Response characteristics of multi-directional bending piezoelectric vibration energy harvester

LI Zeng, XIE Kun, DONG Wanjing, WANG Bohui

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (15) : 19-27.

PDF(3163 KB)
PDF(3163 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (15) : 19-27.
VIBRATION THEORY AND INTERDISCIPLINARY RESEARCH

Response characteristics of multi-directional bending piezoelectric vibration energy harvester

  • LI Zeng, XIE Kun*, DONG Wanjing, WANG Bohui
Author information +
History +

Abstract

Vibration excitation in environment has randomness and diversity.Here, aiming at traditional energy harvester’s single energy harvesting direction and low energy harvesting efficiency, a multi-directional bending piezoelectric vibration energy harvester with nonlinear magnetic force was proposed, it could collect mechanical vibration energy in multiple directions and improve energy harvesting efficiency.The finite element model of the energy harvester was constructed using the simulation software COMSOL Multiphysics, and modal analysis, harmonic response analysis, and electric response analysis of the model were completed.Meanwhile, effects of key factors of bonding position of piezoelectric sheets, external resistance, magnetic repulsion, excitation acceleration and magnetic distance on output response characteristics of the energy harvester were deeply explored with tests.The results showed that introducing magnetic force can effectively broaden energy harvesting frequency band and improve output power; when excitation acceleration is 1g and magnetic distance is 20 mm, the device’s output power reaches 0.8 mW; in addition, parameters of piezoelectric sheet ponding position and external resistance have a significant impact on energy harvesting performance.

Key words

vibration capture / piezoelectricity / multi-directional bending type / magnetic repulsion / modal analysis

Cite this article

Download Citations
LI Zeng, XIE Kun, DONG Wanjing, WANG Bohui. Response characteristics of multi-directional bending piezoelectric vibration energy harvester[J]. Journal of Vibration and Shock, 2025, 44(15): 19-27

References

[1] STAMATELLOU A  M ,KALFAS A I. Piezoelectric energy harvesting experiments under combined aerodynamic and base excitation[J]. Journal of Intelligent Material Systems and Structures, 2021, 32(2) : 169-181.
[2] LI X, LI Z, LIU B, et al. Numerical research on a vortex shedding induced piezoelectric-electromagnetic energy harvester[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(1) : 105-120.
[3] 侯成伟,单小彪,宋汝君,等.风向自适应型涡激振动压电俘能器的试验研究[J].机械工程学报,2022,58(20):120-127.
HOU Chengwei, SHAN Xiaobiao, SONG Rujun, et al. Experimental study of orientation adaptive piezoelectric energy harvester based on vortex induced vibration[J]. Chinese Journal of Mechanical Engineering,2022,58(20):120-127.
[4] MESCHINO M, WANG L, XU H T, et al. Low‐frequency nanocomposite piezoelectric energy harvester with embedded zinc oxide nanowires[J]. Polymer Composites, 2021, 42(9) : 4573-4585.
[5] Chen Y, GU C, CHEN W, et al. A Novel Hybrid Piezoelectric-Electromagnetic Micro-Power Generator by Harvesting Low Frequency Acoustic Energy[J]. IOP Conference Series: Earth and Environmental Science, 2020, 617(1) : 012048-.
[6] ZHOU S, ZUO L. Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 61 : 271-284.
[7] PRAMOD K S, PRASHANT V. Baredar. Analysis on piezoelectric energy harvesting small scale device – a review[J]. Journal of King Saud University - Science, 2019, 31(4) : 869-877.
[8] LIU H, GAO S, WU J, et al. Study on the Output Performance of a Nonlinear Hybrid Piezoelectric-Electromagnetic Harvester under Harmonic Excitation. Acoustics 2019, 1, 382-392.
[9] MA X, LI H, ZHOU S, et al. Characterizing nonlinear characteristics of asymmetric tristable energy harvesters[J]. Mechanical Systems and Signal Processing, 2022, 168.
[10] 王东伟, 刘明星, 吴霄, 等.压电式摩擦振动能量收集的试验研究与仿真分析 [J] 机械工程学报, 2021. 57: 89-98.
WANG Dongwei, LIU Mingxing, WU Xiao, et al. Experimental and numerical study on the response characteristics of piezoelectric energy harvester via friction-induced vibration[J]. Chinese Journal of Mechanical Engineering, 2021:57:89-98.
[11] 吴义鹏, 李森, 蓝春波, 等.压电能量俘获结构及其升频转换技术的发展现状 [J] 机械工程学报, 2022. 58: 27-45.
WU Yipeng, LI Sen, LAN Chunbo, et al.Recent development of piezoelectric energy harvesting structures and the technology of frequency up-converting oscillators[J]. Chinese Journal of Mechanical Engineering, 2022. 58:27-45.
[12] LI K, YANG Z, ZHOU S. Performance enhancement for a magnetic-coupled bi-stable flutter-based energy harvester[J]. Smart Materials and Structures, 2020, 29(8):085045-.
[13] LIU H C, ZHONG J W, LEE C K, et al. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications[J]. Applied Physics Reviews, 2018, 5(4):041306.
[14] PRIYA S, SONG H-C, ZHOU Y, et al.A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits, 2017. 4: 3-39.
[15] 亓有超, 赵俊青, 张弛.微纳振动能量收集器研究现状与展望 [J] 机械工程学报, 2020. 56: 1-15.
Qi Youchao, Zhao Junqing, Zhang Chi.Review and prospect of micro-nano vibration energy harvesters [J]. Chinese Journal of Mechanical Engineering, 2020. 56:1-15.
[16] ZHANG J, WANG C, BOWEN C. Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale. 2014 Nov 21;6(22):13314-27. 
[17] BOUGHALEB J, ARNAUD  A, MONFRAY  S, et al. Coupling of a bimetallic strip heat engine with a piezoelectric transducer for thermal energy harvesting[J]. Molecular Crystals and Liquid Crystals, 2016, 628(1):15-22.
[18] 赵庆玲,刘诗雨,沈辉,等.折弯式压电磁耦合俘能器发电性能试验研究[J/OL].机械工程学报,1-8[2024-08-27].
ZHAO Qingling, LIU Shiyu, SHEN Hui, et al. Experimental study on power generation performance of bending piezoelectric-electromagnetic coupling energy harvester [J/OL]. Journal of mechanical engineering, 1-8 [2024-08-27].
[19] 芮小博, 李一博, 刘悦, 等.垂向动磁式压电振动能量收集器建模及实验研究 [J] 振动与冲击, 2020. 39: 215-21.
Rui Xiaobo, Li Yibo, Liu Yue, et al. Modelling and experimental study of vertical moving magnetic piezoelectricvibration energy harvester[J] Vibration and Shock, 2020. 39: 215-21.
[20] KARADAG C. V., TOPALOGLU N. (November 23, 2016). "A Self-Sufficient and Frequency Tunable Piezoelectric Vibration Energy Harvester."Journal of Vibration and Acoustics-Transactions of the ASME,2017; 139(1): 011013.
[21] 刘悦, 李一博, 芮小博, 等.球形管道内检测器压电能量收集器设计及实验研究 [J] 振动与冲击, 2020. 39: 258-65+76.
LIU Yue, LI Yibo, RUI Xiaobo, et al.Design and tests for piezoelectric vibration energy harvesting device used by a spherical inner detector in pipeline[J] Vibration and Shock, 2020. 39: 258-65+76. 
[22] 吴义鹏, 季宏丽, 裘进浩, 等.共振频率可调式非线性压电振动能量收集器 [J] 振动与冲击, 2017. 36: 12-16+22.
Wu Yipeng, JI Hongli, QIU Jinhao, et al.A nonlinear piezoelectric vibration energy harvesting device with tunable resonance frequencies[J]. Journal of Vibration and Shock, 2017. 36: 12-16+22.
[23] 桑英军, 滕藤, 曹阳, 等.电磁与压电复合式振动能量收集系统研究 [J] 首都师范大学学报(自然科学版), 2022. 43: 17-23+29.
SANG Yingjun, TENG Teng, CAO Yang, et al. Research on electromagnetic and piezoelectric hybrid vibration energy harvesting system[J] Journal of Capital Normal University(Natural Science Edition), 2022. 43:17-23 +29.
[24] 冯逸亭,刘文光,方孟翔,等.压电振动能量收集器的建模与响应分析[J].压电与声光,2022,44(01):62-67.
FENG Yiting, LIU Wenguang, FANG Mengxiang, et al. Modeling and response analysis of piezoelectric vibration energy harvester[J]. Piezoelectricity and Acoustooptics,2022,44(01):62-67. 
[25] SHAN X, Li H, Yang Y, et al. Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration, Energy, 2019. 172: 134-40.
[26] WANG G, LIAO W-H, YANG B, et al. Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier, Mechanical Systems and Signal Processing, 2018. 105: 427-46.
[27] PASHARAVESH A, DALIR H. Flexural modes coupling in cantilever-type piezoelectric energy harvesters, Energy Reports, 2021. 7: 6438-50.
[28] Li J, Wang G, Yang P, et al. An orientation-adaptive electromagnetic energy harvester scavenging for wind-induced vibration, Energy, 2024. 286.
[29] 陈仲生.压电式振动能量俘获理论与方法[M].北 京: 国防工业出版社,2017:40-70.
CHEN Zhongsheng. Theory and method of energy capture in piezoelectric vibration [M]. Beijing: National Defense Industry Press,2017:40-70.
PDF(3163 KB)

Accesses

Citation

Detail

Sections
Recommended

/