Vortex-induced vibration characteristics of submerged cable-supported submerged floating tunnel considering intermediate supporting stiffness and boundary stiffness#br#

YI Zhuangpeng1, 2, YIN Xinhua1, 2, LI Yujie1, 2, ZENG Youyi1, 2, PAN Quan1, 2

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (15) : 28-40.

PDF(5972 KB)
PDF(5972 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (15) : 28-40.
VIBRATION THEORY AND INTERDISCIPLINARY RESEARCH

Vortex-induced vibration characteristics of submerged cable-supported submerged floating tunnel considering intermediate supporting stiffness and boundary stiffness#br#

  • YI Zhuangpeng*1,2, YIN Xinhua1,2, LI Yujie1,2, ZENG Youyi1,2, PAN Quan1,2
Author information +
History +

Abstract

The submerged floating tunnel (SFT) is an ultra-long underwater traffic structure. The research on its vortex-induced vibration (VIV) under currents by considering the effects of the intermediate supporting stiffness and boundary stiffness, and the prediction of VIV amplitudes are crucial. The connections between the tube and the intermediate cables, boundaries at both ends are equivalent to vertical and rotational elastic constraints with stiffness close to engineering reality. A VIV model for the cable-supported SFT considering both types of stiffness is established, and the interaction between the current and the tube is considered by a wake oscillator. The designing parameters and constraints stiffness for the SFT are proposed by referring the existing literatures. The influence of various combinations of intermediate and boundary stiffness on the VIV characteristics are discussed. The results indicate that the SFT tube exhibits similar VIV patterns with different numbers of tube segments. An increase of stiffness can suppress the excitation of higher-order frequency modes. Within the locked interval, the vibration frequency can reach about 1.20 times the natural frequency within certain current ranges. Nonlinear phenomena such as sudden change of response amplitudes in a cliff like manner, energy conversion between modes, "beat", and quasi-periodic motion are observed in the VIV response.

Key words

cable-supported submerged floating tunnel / vortex-induced vibration / intermediate supporting stiffness / boundary stiffness / wake oscillator

Cite this article

Download Citations
YI Zhuangpeng1, 2, YIN Xinhua1, 2, LI Yujie1, 2, ZENG Youyi1, 2, PAN Quan1, 2. Vortex-induced vibration characteristics of submerged cable-supported submerged floating tunnel considering intermediate supporting stiffness and boundary stiffness#br#[J]. Journal of Vibration and Shock, 2025, 44(15): 28-40

References

[1] Xu W, Ma Y, Liu G, et al. A review of research on tether-type submerged floating tunnels[J]. Applied Ocean Research, 2023, 134: 103525.
[2] Lu Y, Liu Z, Xu W. Research progress and prospects on pier-type submerged floating tunnels[J]. Ocean Engineering, 2024, 308: 118187.
[3] 项贻强, 陈政阳, 杨赢. 悬浮隧道动力响应分析方法及模拟的研究进展[J]. 中国公路学报, 2017, 30(1): 69-76.
Xiang Yiqiang, Chen Zhengyang, Yang Ying. Research Development of Method and Simulation for Analyzing Dynamic Response of Submerged Floating Tunnel[J]. China Journal Highway Transportation, 2017, 30(1): 69-76. (in Chinese)
[4] 丁浩, 程亮, 李科. 悬浮隧道结构动力响应研究进展与展望[J]. 隧道建设(中英文), 2019, 39(6): 901-912.
Ding Hao, Cheng Liang, Li Ke. Research Progress and Prospect on Dynamic Response of SFT Structures[J]. Tunnel Construction, 2019, 39(6): 901-912. (in Chinese)
[5] Xie J M, Chen J M. Dynamic response analysis of submerged floating tunnel-canyon water system under earthquakes[J]. Applied Mathematical Modelling, 2021, 94: 757-779.
[6] 李昊, 程晓辉, 余翰良, 等. 张力腿式水下悬浮隧道地震响应模拟——以琼州海峡跨海隧道工程为例[J]. 现代隧道技术, 2022, 59(3): 146-154.
Li Hao, Cheng Xiaohui, Yu Hanliang, et al. Seismic Response Simulation of Submerged Floating Tunnel with Tension Legs: A Case Study on the Qiongzhou Strait Crossing Tunnel Project[J]. Modern Tunnelling Technology, 2022, 59(3): 146-154. (in Chinese)
[7] 罗刚, 郭正儒, 张玉龙, 等. 水下爆炸-波浪联合作用下悬浮隧道响应分析[J]. 振动与冲击, 2022, 41(6): 256-264+288.
Luo Cang, Guo Zhengru, Zhang Yulong, et al. Response analysis of a submerged floating tunnel under the combined effect of underwater explosion and wave[J]. Journal of Vibration and Shock, 2022, 41(6): 256-264+288. (in Chinese)
[8] 刘建成, 闫宏生, 孟祥伟. 深海悬浮隧道缆索振动与腐蚀疲劳可靠性研究[J]. 船舶力学, 2023, 27 (08): 1231-1239.
Liu Jiancheng, Yan Hongsheng, Meng Xiangwei. Vibration and corrosion fatigue reliability analysis of submerged floating tunnel cables[J]. Journal of Ship Mechanics, 2023, 27 (08): 1231-1239. (in Chinese)
[9] Deng S, Ren H, Xu Y, et al. Experimental study of vortex-induced vibration of a twin-tube submerged floating tunnel segment model[J]. Journal of Fluids and Structures, 2020, 94: 102908.
[10] 阳志文, 张华庆, 李金钊, 等. 波流作用下悬浮隧道运动响应纵向截断模型试验研究[J]. 海洋工程, 2021, 39 (2): 44-52.
Yang Zhiwen, Zhang Huaqing, Li Jinzhao, et al. A study on the wave-current-induced motion responses of submerged floating tunnels using longitudinal truncated model tests[J]. The Ocean Engineering, 2021, 39 (2): 44-52. (in Chinese)
[11] Wu Z W, Wang D X , Ke W, et al. Experimental investigation for the dynamic behavior of submerged floating tunnel subjected to the combined action of earthquake, wave and current[J]. Ocean Engineering, 2021, 239: 109911. 
[12] 李勤熙. 波-流耦合作用下悬浮隧道关键参数数值仿真与物理试验[D]. 重庆交通大学, 2019. 
LI Qinxi. Numerical simulation and physical experiment of submerged floating tunnel key parameters under wave-current coupling[D]. Chongqing Jiaotong University, 2019. (in Chinese)
[13] 王广地, 周晓军, 高波. 均匀流作用下悬浮隧道管段水动力参数分析[J]. 四川大学学报(工程科学版), 2009, 41(2): 96-102. 
Wang Guangdi, Zhou Xiaojun, Gao Bo. Analysis of hydrodynamic coefficients of the submerged floating tunnel subjected to homogeneous flow[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(2): 96-102. (in Chinese)
[14] 曾繁旭, 陈进, 林巍. 悬浮隧道特征横断面过水特性研究4: 绕流场特征[J]. 中国港湾建设, 2020, 40(2): 76-81. 
Zeng Fanxu, Chen Jin, Lin Wei. Submerged floating tunnel conceptualized cross-section hydrodynamic characteristic study 4: Flow field characteristics[J]. China Harbour Construction, 2020, 40(2): 76-81. (in Chinese)
[15] Liu M, Jin R, Wang H. Numerical investigation of vortex induced vibration of a circular cylinder for mass ratio less than 1.0[J]. Ocean Engineering, 2022, 251: 111130.
[16] Facchinetti M L, De Langre E, Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and structures, 2004, 19(2): 123-140.
[17] Larsen A. A generalized model for assessment of vortex-induced vibrations of flexible structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57(2-3): 281-294.
[18] Wang X Q, So R M C, Chan K T. A non-linear fluid force model for vortex-induced vibration of an elastic cylinder [J]. Journal of Sound and Vibration. 2003, 260(2): 287-305.
[19] Chen Z Y, Xiang Y Q, Lin H, et al. Coupled vibration analysis of submerged floating tunnel system in wave and current[J]. Applied Sciences, 2018, 8(8): 1311.
[20] Lin H, Xiang Y Q, Yang Y S, et al. Fluid–Vehicle–Tunnel Coupled Vibration Analysis of a Submerged Floating Tunnel Based on a Wake Oscillator Model[J]. Journal of the Waterway, Port, Coastal and Ocean Engineering, 2022, 148(1): 04021037.
[21] 范泽旭, 袁勇, 何任飞, 等. 固定支承式悬浮隧道在洋流涡激作用下的动力响应研究[J]. 铁道科学与工程学报, 2020, 17(3): 653-659.
Fan Zexu, Yuan Yong, He Renfei, et al. Dynamic response analysis of submerged floating tunnel supported on columns in vortex-induced vibration[J]. Journal of Railway Science and Engineering, 2020, 17(3): 653-659. (in Chinese)
[22] 颜凝雨, 杨自豪, 张洁琼, 等. 涡激响应尾流双振子模型的参数反演方法[J].计算力学学报,2021, 38(1): 103-111.
Yan Ningyu, Yang Zihao, Zhang Jieqiong, et al. Parameter inversion method of double wake oscillators model with vortex induced response[J]. Chinese Journal of Computational Mechanics, 2021, 38(1): 103-111. (in Chinese)
[23] 徐万海, 谢武德, 高喜峰, 等. 海底多段悬跨管道涡激振动特性分析[J]. 船舶力学, 2017, 21(8): 1025-1034.
Xu Wanhai, Xie Wude, Gao Xifeng, et al. Study on Vortex-Induced Vibrations (VIV) ofmulti spans pipelines[J]. Journal of Ship Mechanics, 2017, 21(8): 1025-1034. (in Chinese)
[24] Liu G, Li H, Qiu Z, et al. A mini review of recent progress on vortex-induced vibrations of marine risers[J]. Ocean Engineering, 2020, 195: 106704.
[25] 甘鹏山, 赵国虎, 袁勇, 等. 沉管隧道横向地基刚度分布模式初探[J]. 隧道建设(中英文), 2018, 38(4): 611-618.
Gan Pengshan, Zhao Guohu, Yuan Yong, et al. Study of Distribution of Transverse Foundation Stiffness of Immersed Tunnel[J]. Tunnel Construction, 2018, 38(4): 611-618.
[26] 李云刚, 吕勇刚, 张涛, 等. 大连湾海底隧道地基处理及基床整平关键技术[J].中国港湾建设,2022,42(12):91-96.
Li Yungang, Lv Yong-gang, Zhang Tao, et al. Key technologies in ground improvement and foundation bed leveling for Dalian Bay Subsea Tunnel[J]. China Harbour Engineering, 2022, 42(12): 91-96. (in Chinese)
[27] 陈庆. 超宽沉管隧道横向地基刚度数值模拟研究[J]. 公路, 2018, 63(6): 325-328.
Chen Qing. Numerical simulation study on transverse foundation stiffness of ultra wide immersed tube tunnel[J]. Highway, 2018, 63(6): 325-328. (in Chinese)
[28] 岳夏冰, 吴定意, 王奕丁, 等. 外海大回淤沉管隧道沉降影响因素敏感性分析[J]. 水资源与水工程学报, 2023, 34(6): 164-172.
Yue Xiabing, Wu Dingyi Wang Yiding, et al. Sensitivity analysis of settlement influencing factors of offshore large siltation immersed tunnel[J]. Journal of Water Racecourses & Water Engineering, 2023, 34(6): 164-172. (in Chinese)
[29] Yi Z P, Yuan M, Tu G Y, et al. Modeling of the multi-cable supported arch and a novel technique to investigate the natural vibratory characteristics[J]. Applied Mathematical Modelling, 2019, 75: 640-662. 
[30] Lu W, Ge F, Wang L, et al. On the slack phenomena and snap force in tethers of submerged floating tunnels under wave conditions[J]. Marine Structures,2011, 24(4): 358-376.
[31] 魏纲, 陆世杰. 沉管隧道管节柔性接头模型研究现状及展望[J]. 现代隧道技术, 2019, 56(1): 6-13.
Wei Gang, Lu Shijie. Present status and prospects of research on flexible joint models of immersed tube tunnels[J]. Modern Tunnelling Technology, 2019, 56(1): 6-13. (in Chinese)
[32] 单联君, 郭建民 ,倪芃芃, 等. 沉管隧道接头型式发展及变形机制研究进展[J]. 隧道建设(中英文), 2023, 43(S1): 14-24.
Shan Lianjun, Guo Jianmin, Ni Pengpeng, et al. Review on development of joint type and deformation mechanism of immersed tunnel under differential foundation settlement[J]. Tunnel Construction, 2023, 43(S1): 14-24. (in Chinese)
[33] 禹海涛,袁勇,刘洪洲,等.沉管隧道接头力学模型及刚度解析表达式[J]. 工程力学, 2014, 31(6): 145-150.
Yu Haitao, Yuan Yong, Liu Hongzhou, et al. Mechanical model and analytical solution for stiffness in the joints of an immersed-tube tunnel[J]. Engineering Mechanics, 2014, 31(6): 145-150. (in Chinese)
[34] Sanaati B, Kato N. Vortex-induced vibration (VIV) dynamics of a tensioned flexible cylinder subjected to uniform cross-flow[J]. Journal of marine science and technology, 2013, 18: 247-261.
[35] 朱灿, 刘炎, 易壮鹏. 悬浮隧道支撑锚索在管体运动状态下的动频率与湿模态[J]. 振动与冲击, 2024, 43(2): 271-279.
Zhu Can, Liu Yan, Yi Zhuangpeng. Dynamic frequency and wet mode of the supporting cables of a submerged floating tunnel in tube motion state [J]. Journal of Vibration and Shock, 2024, 43 (2): 271-279. (in Chinese)
[36] Jauvtis N, Williamson C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of Fluid Mechanics, 2004,509:23-62.
PDF(5972 KB)

Accesses

Citation

Detail

Sections
Recommended

/