Energy dissipation characteristics of concrete slabs under low-speed impact

YAN Jiawei, GU Song, KONG Chao

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (15) : 280-288.

PDF(2777 KB)
PDF(2777 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (15) : 280-288.
SHOCK AND EXPLOSION

Energy dissipation characteristics of concrete slabs under low-speed impact

  • YAN Jiawei, GU Song*, KONG Chao
Author information +
History +

Abstract

In order to investigate the energy dissipation characteristics of concrete slabs under low-velocity impact, 14 groups of plain concrete slabs were tested by using a drop hammer test device. The impact process of each group was numerically simulated by using the Continuous Surface Cap Model (CSCM) combined with the nonlinear display dynamic analysis software LS-DYNA. The energy change of the specimen during the impact process was found through the law of conservation of energy. The effects of different concrete strengths, impact velocities and concrete slab thicknesses on the energy dissipation characteristics of concrete slabs and their destructive effects were analysed. The results show that the impact force increases with the increase of the impact velocity of the drop hammer. The dynamic change process of the concrete slab during the low-velocity impact is mainly divided into the elastic stage, the plastic stage and the complete destruction stage. The downward deflection of the concrete slab increases with increasing impact velocity, showing a better parabolic relationship. When the impact velocity is higher, it will show a stronger erosion effect. The more energy consumed by the kinetic energy of the concrete fragments and the kinetic energy of the drop hammer during the fracture process, the less energy is applied to the crack expansion. This study can provide a reference for bridge deck slabs and pavements to prevent low-velocity impact effects for the design of rockfall hazard protection projects.

Key words

low-speed / impact test / energy dissipation / damage effect / break energy

Cite this article

Download Citations
YAN Jiawei, GU Song, KONG Chao. Energy dissipation characteristics of concrete slabs under low-speed impact[J]. Journal of Vibration and Shock, 2025, 44(15): 280-288

References

[1] 古松,彭丰,余志祥,等. 低速冲击作用下混凝土板破坏效应试验研究[J]. 振动与冲击,2019, 38(24): 107-114.
GU Song, PENG Feng, YU Zhixiang, et al. An experimental study on the damage effects of the concrete slabs under low-velocity impact [J]. Journal of Vibration and Shock, 2019, 38(24): 107-114.
[2] Peng F, Gu S, Li T B. et al. Experimental and Theoretical Study of Rockfall Impacts on Concrete Slab under Low-velocity Impact [J]. KSCE Journal of Civil Engineering, 2022, 26(11): 4653–4663.
[3] 孟一. 冲击荷载作用下钢筋混凝土梁的试验及数值模拟研究[D]. 长沙: 湖南大学, 2012.
[4] Xiao Y, Li B, Fujikake K. Behavior of Reinforced Concrete Slabs under Low-Velocity Impact [J]. ACl Structural Journal, 2017, 114(3), 643-658.
[5] 王爽. 高陡边坡落石作用对隧道棚洞的动力响应及抗冲击研究[D]. 成都: 西南交通大学, 2015.
[6] 顾乡,余志祥,赵雷,等. 落石冲击能量对山区桥梁损伤的影响[J]. 西南交通大学学报, 2016, 51(06): 1131-1137. 
GU Xiang, YU Zhixiang, ZHAO Lei, et al. Influence of Rockfall Impact Energy on Mountain Bridge Damage [J]. Journal of Southwest Jiaotong University, 2016, 51(06): 1131-1137.
[7] 赵嘉琛,古松,任松波,等. 低速冲击下混凝土板的能量耗散研究[J]. 振动与冲击, 2023, 42(23): 300-306. 
ZHAO Jiachen, GU Song, REN Songbo, et al. Energy dissipation of concrete slabs under low-speed impact [J]. Journal of Vibration and Shock, 2023, 42(23): 300-306.
[8] 李金星. 落石低速冲击混凝土板破坏效应研究[D]. 绵阳: 西南科技大学, 2017.
[9] 党发宁,李玉涛,任劼,等. 混凝土冲击破坏动态力学及能量特性分析[J]. 爆炸与冲击, 2022, 42(08): 63-76. 
DANG Faning, LI Yutao, REN Jie, et al. Analysis of dynamic mechanics and energy characteristics of concrete impact failure [J]. Explosion and Shock Waves, 2022, 42(08): 63-76.
[10] 初旭东. 多边形厚板塑性极限状态的研究[D]. 阜新: 辽宁工程技术大学, 2013.
[11] 李玉涛,党发宁,任劼,等. 混凝土冲击破坏动力特性及能耗规律研究[J]. 水力发电学报, 2022, 41(09): 139-149.
LI Yutao, DANG Faning, REN Jie, et al. Dynamic characteristics and energy consumption laws of concrete impact failure [J]. Journal of Hydroelectric Engineering, 2022, 41(09): 139-149.
[12] 纪杰杰,李洪涛,吴发名,等. 冲击荷载作用下岩石破碎分形特征[J]. 振动与冲击, 2020, 39(13): 176-183. 
JI Jiejie, LI Hongtao, WU Faming, et al. Fractal characteristics of rock fragmentation under impact load [J]. Journal of Vibration and Shock, 2020, 39(13): 176-183.
[13] Zhang Z X, Kou S Q, Jiang L G, et al. Effects of loading rate on rock fracture: fracture characteristics and energy partitioning [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 745-762.
[14] 翟越,马国伟,赵均海,等. 花岗岩和混凝土在单轴冲击压缩荷载下的动态性能比较[J]. 岩石力学与工程学报, 2007, 26 (04): 762-768. 
ZHAI Yue, MA Guowei, ZHAO Junhai, et al. Comparison of dynamic capabilities of granite and concrete under uniaxial impact compressive loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (04): 762-768.
[15] 甘德清,刘志义,李占金,等. 冲击载荷作用下磁铁矿石破碎能耗特征[J]. 岩石力学与工程学报, 2018, 37(S1): 3500-3506.
GAN Deqing, LIU Zhiyi, LI Zhanjin, et al. Broken energy dissipation characteristics of magnetite under impact loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3500-3506.
[16] 巫绪涛,廖礼. 脆性材料中应力波衰减规律与层裂实验设计的数值模拟[J]. 爆炸与冲击, 2017, 37(04): 705-711.
WU Xutao, LIAO Li. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design [J]. Explosion and Shock Waves, 2017, 37(04): 705-711.
[17] 付应乾,董新龙. 落锤冲击下钢筋混凝土梁响应及破坏的实验研究[J]. 中国科学:技术科学, 2016, 46(04): 400-406.
FU Yingqian, DONG Xinlong. An experimental study on impact response and failure behavior of reinforced concrete beam [J]. Scientia Sinica(Technologica), 2016, 46(04): 400-406.
[18] 易伟建,史先达. 钢筋混凝土剪力墙在冲击荷载作用下的数值模拟分析[J]. 振动与冲击, 2019, 38(13): 102-110. 
YI Weijian, SHI Xianda. Numerical simulation analysis for RC shear walls under impact load [J]. Journal of Vibration and Shock, 2019, 38(13): 102-110.
[19] KISHI N, MIKAMI H. Empirical formulas for designing reinforced concrete beams under impact loading [J]. ACI Structural Journal, 2012, 109(4): 509-520.
PDF(2777 KB)

Accesses

Citation

Detail

Sections
Recommended

/