Floe-cylinder collision response simulation based on CFD-FEM coupled method

SONG Yinglong1, YANG Borui1, ZHAO Yu2, YANG Biye3, ZHENG Yuna1, ZHANG Guiyong1, 4

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (15) : 67-74.

PDF(2957 KB)
PDF(2957 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (15) : 67-74.
VIBRATION THEORY AND INTERDISCIPLINARY RESEARCH

Floe-cylinder collision response simulation based on CFD-FEM coupled method

  • SONG Yinglong1, YANG Borui1, ZHAO Yu2, YANG Biye3, ZHENG Yuna1, ZHANG Guiyong*1,4
Author information +
History +

Abstract

Collision floe load is an important factor affecting the safety of polar ocean structures. Based on the co-simulation approach between CFD software STAR-CCM+ and FEM software Abaqus, a numerical model for calculating the interaction between structure-floe-water was constructed, and the collision response between cylindrical structure and square floe was studied. The influence of different factors on collision response was analyzed. Furthermore, from the perspective of energy conversion, a collision force correction model considering the initial rotation of floe is proposed. The influence of pre-collision, collision and post-collision stages on the peak value of collision force is analyzed, and the rapid estimation of collision load of floe with initial rotation is realized. It is found that the velocity attenuation of floe before collision, the duration of collision and the rotation of floe after collision have great influence on the collision force. The collision force increases first and then decreases with the increase of the rotation angle of floe. 

Key words

CFD-FEM method / co-simulation / floe / structure / collision response

Cite this article

Download Citations
SONG Yinglong1, YANG Borui1, ZHAO Yu2, YANG Biye3, ZHENG Yuna1, ZHANG Guiyong1, 4. Floe-cylinder collision response simulation based on CFD-FEM coupled method[J]. Journal of Vibration and Shock, 2025, 44(15): 67-74

References

[1] 许晴,胡麦秀. 北极地区石油资源开发潜力评估[J]. 海洋开发与管理, 2023,40(08):35-40.
XU Qing, HU Maixiu. Evaluation of Oil Resources Development Potential in the Arctic Region[J]. Ocean Development and Management, 2023,40(08):35-40.
[2] 张祥国. 俄罗斯新版北极战略及其发展前景[J]. 西伯利亚研究,2022,49(06):59-70.
ZHANG Xiangguo. Russia's New Arctic Strategy and Its Dev-elopment Prospects[J]. Siberian Studies, 2022,49(06):59-70.
[3] 魏蔚. 美国北极地区能源开发政策演变[J]. 海洋开发与管理,2024,41(01):86-93.
WEI Wei. Evolution of US Energy Development Policy in the Arctic Region[J]. Ocean Development and Management, 2024,41(01):86-93.
[4] 张文昊,赵洁,顾洪等. 中国极地油气资源开发装备产业现状及发展策略建议[J]. 国际石油经济,2021,29(03):33-38.
ZHANG Wenhao, ZHAO Jie ,GU Hong , et al. Current situations and development measures of equipment industry of Arctic oil and gas development in China[J]. International Petroleum Economics, 2021,29(03):33-38.
[5] Uto S, Shimoda H, Wako D, et al. NSR transit simulations by the vessel performance simulator “VESTA” Part 2 Simple resistance formulae of ships in floe ice[C]. Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions. 2015.
[6] Huang L, Li Z, Ryan C, et al. Ship resistance when operating in floating ice floes: Derivation, validation, and application of an empirical equation[J]. Marine Structures, 2021, 79: 103057.
[7] Zong Z, Zhou L. A theoretical investigation of ship ice resistance in waters covered with ice floes. Ocean Engineering. 2019 Aug 15;186:106114.
[8] 黄焱,李伟,王迎晖,等. 大型运输船极地浮冰区航行阻力的模型试验[J]. 中国造船,2016,57(3):26-35.
HUANG Yan, LI Wei, WANG Yinghui, et al. Model Tests on the Resistance of a Large Transport Ship in ArcticRegion with Pack Ice[J]. Shipbuilding of China, 2016,57(3):26-35.
[9] 黄焱,孙剑桥,季少鹏,等. 大型运输船极地平整冰区航行阻力的模型试验[J]. 中国造船,2016,57(3):36-44.
HUANG Yan, SUN Jianqiao, JI Shaopeng, et al. Model Tests of Resistance of Transport Vessel Navigating under Level Ice Conditions in Polar Region[J]. Shipbuilding of China, 2016,57(3):36-44.
[10] Tsarau A, Lubbad R, Løset S. A numerical model for simulation of the hydrodynamic interactions between a marine floater and fragmented sea ice[J]. Cold Regions Science and Technology, 2014, 103: 1-14.
[11] 孙剑桥,黄焱. 基于模型试验的船-冰碰撞载荷空间分布演变历程研究[J]. 振动与冲击, 2021, 40(5): 16-23
SUN Jianqiao, HUANG Yan. Evolution of spatial distribution of ship-ice collision load based on model tests[J]. Journal of Vibration and Shock, 2021, 40(5): 16-23
[12] 李友龙. 半潜式海洋平台与冰碰撞机理研究[D]. 哈尔滨工业大学,2017.
LI Youlong. Research on the collision mechanism between semi-submersible ocean platform and ice[D].Harbin Institute of Technology,2017.
[13] 许杰文. 海冰与半潜式海洋平台的碰撞损伤研究[D]. 哈尔滨工业大学,2021.
XU Jiewen. Research on collision damage between sea ice and semi-submersible offshore platform[D].Harbin Institute of Technology,2017.
[14] 贡力,董洲全,杨腾腾,崔越,杜云飞. 水介质中冰-桥墩碰撞动力响应分析[J]. 振动与冲击, 2024, 43(11): 72-82
GONG Li, DONG Zhouquan, YANG Tengteng, CUI Yue, DU Yunfei. Dynamic response analysis of ice-bridge pier collision in water medium[J]. Journal of Vibration and Shock, 2024, 43(11): 72-82
[15] Huang L, Tuhkuri J, Igrec B, et al. Ship resistance when operating in floating ice floes: A combined CFD&DEM approach[J]. Marine Structures, 2020, 74: 102817.
[16] 刘宁,杨博睿,隋智享,等. 船舶与单块碎冰相互作用的水动力效应研究[J]. 中国造船,2024,65(02):15-24.
LIU Ning, YANG Borui, SUI Zhixiang, et al. Study on the Hydrodynamic Effect of Ship Interaction with Single Block of Ice[J]. Shipbuilding of China, 2024,65(02):15-24.
[17] Ming Song, Ekaternia Kim,et al.A comparative analysis of the fluid-structure interaction method and the constant added mass method for ice-structure collisions[J].Marine Structures,2016(49):58-75.
[18] 姬贺港,张健,李越. 基于粘聚单元法的冰-柱碰撞流固耦合计算方法研究[J]. 振动与冲击, 2023, 42(11): 42-47
JI Hegang, ZHANG Jian, LI Yue. Fluid-structure interaction calculation method for ice-column collision based on cohesive element method[J]. Journal of Vibration and Shock, 2023, 42(11): 42-47
[19] Zhao Y, Sun Z, Zhang G, et al. Experimental and numerical studies on hydrodynamic effects of ice floe drift and impact process in uniform current[J]. Cold Regions Science and Technology, 2023, 216: 104011.
PDF(2957 KB)

Accesses

Citation

Detail

Sections
Recommended

/