System dynamic reliability of wind turbine gearbox under random wind load

GU Huiyun1, WANG Hongwei1, ZHOU Jianxing1, FEI Xiang1, WEN Jianmin1, 2, FANG Zhong2

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (3) : 238-250.

PDF(3622 KB)
PDF(3622 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (3) : 238-250.
FAULT DIAGNOSIS ANALYSIS

System dynamic reliability of wind turbine gearbox under random wind load

  • GU Huiyun1, WANG Hongwei*1, ZHOU Jianxing1, FEI Xiang1, WEN Jianmin1,2, FANG Zhong2
Author information +
History +

Abstract

The wind turbine gearbox experiences fatigue damage with random wind loads, reducing system reliability. This study focused on the 2MW wind turbine gearbox and established a dynamic transmission system model to assess real-time system reliability. Statistical analysis of component fatigue stresses under dynamic response generated fatigue load spectra. Integrating nonlinear fatigue damage accumulation theory and kernel density estimation method, we developed a stress-strength interference model that considered strength degradation to calculate the dynamic reliability of each component's failure modes. Furthermore, we constructed a system reliability model using Copula functions to analyze the effect of component's common-cause failure on the gearbox's system reliability degradation. The results indicate that the reliabilities of gearbox's epicyclic gear train and intermediate shaft bearings decrease rapidly during operation, while the reliabilities of other components also decline, suggesting early fatigue failures mainly occur on these two places with other components failing later. The system reliability of gearbox is expected to decrease to about 0.5880 over a 20-year lifespan, which provides early fault alert for wind turbine gearbox with the reliabilities of the components.

Key words

wind turbines / reliability / fatigue damage / gears / bearings / failure correlation

Cite this article

Download Citations
GU Huiyun1, WANG Hongwei1, ZHOU Jianxing1, FEI Xiang1, WEN Jianmin1, 2, FANG Zhong2. System dynamic reliability of wind turbine gearbox under random wind load[J]. Journal of Vibration and Shock, 2025, 44(3): 238-250

References

[1] 周志刚, 徐芳. 考虑强度退化和失效相关性的风电齿轮传动系统动态可靠性分析[J]. 机械工程学报, 2016, 52(11): 80-87.
ZHOU Zhigang, XU Fang. Dynamic reliability analysis of gear transmission system of wind turbine considering strength degradation and dependent failure[J]. Journal of Mechanical Engineering, 2016, 52(11): 80-87.
[2] 安宗文, 董雅芸. 基于马尔可夫过程的风电齿轮箱齿轮强度退化模型[J]. 兰州理工大学学报, 2018, 44(3): 34-38.
AN Zongwen, DONG Yayun. Markov process-based strength degradation model of gear in wind turbine gearbox[J]. Journal of Lanzhou University of Technology, 2018, 44(3): 34-38.
[3] NEJAD A R, GAO Z, MOAN T. On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains[J]. International Journal of Fatigue, 2014, 61: 116-128.
[4] DONG W B, NEJAD A R, MOAN T, et al. Structural reliability analysis of contact fatigue design of gears in wind turbine drivetrains[J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104-115.
[5] 毛天雨, 余泳, 刘怀举, 等. 飞行汽车齿轮传动系统动态可靠性分析[J]. 机械传动, 2021, 45(6): 96-103+176.
MAO Tianyu, YU Yong, LIU Huaiju, et al. Dynamic reliability analysis of flying car gear transmission system[J]. Journal of Mechanical Transmission, 2021, 45(6): 96-103+176.
[6] 田和鑫. 风电齿轮箱的性能退化建模与可靠性分析[D]. 成都: 电子科技大学, 2022.
[7] 刘波, 安宗文. 考虑零件寿命相关的风电齿轮箱可靠性分析[J]. 机械工程学报, 2015, 51(10): 164-171.
LIU Bo, AN Zongwen. System reliability analysis of wind turbine gearbox considering component life dependency[J]. Journal of Mechanical Engineering, 2015, 51(10): 164-171.
[8] LI Y, ZHU C C, CHEN X, et al. Fatigue Reliability Analysis of Wind Turbine Drivetrain Considering Strength Degradation and Load Sharing Using Survival Signature and FTA[J]. Energies, 2020, 13(8): 2108.
[9] 乔自珍, 周建星, 章翔峰. 多源时变激励下两级直齿轮传动系统有限元建模方法研究[J]. 振动与冲击, 2019, 38(15): 182-189.
QIAO Zizhen, ZHOU Jianxing, ZHANG Xiangfeng. Finite element modelling method for a two-stage spur gear transmission system under multi-source time-varying excitations[J]. Journal of Vibration and Shock, 2019, 38(15): 182-189.
[10] HARRIS T A, KORZALAS M N. 滚动轴承分析: 轴承技术的基本概念. 第1卷[M]. 罗继伟, 马伟, 等译. 北京: 机械工业出版社, 2010.
[11] 周建星, 孙文磊, 曹莉, 等. 行星齿轮传动系统碰撞振动特性研究[J]. 西安交通大学学报, 2016, 50(3): 16-21.
ZHOU Jianxing, SUN Wenlei, CAO Li, et al. Vibro-impact characteristics of planetary gear transmission[J]. Journal of Xi’an Jiaotong University, 2016, 50(3): 16-21.
[12] IEC 61400-1. Wind energy generation systems-Part 1: Design requirements[S]. Geneva: International Electrotechnical Commission, 2019.
[13] HANSEN M. Aerodynamics of wind turbines[M]. New York: Routledge, 2015.
[14] 李想. 风力发电机组齿轮传动系统可靠性分析与优化[D]. 重庆: 重庆大学, 2022.
[15] GB/T 3480.2—2021. 直齿轮和斜齿轮承载能力计算 第2部分:齿面接触强度(点蚀)计算[S]. 北京: 中国标准出版社, 2021.
[16] GB/T 3480.3—2021. 直齿轮和斜齿轮承载能力计算 第3部分:轮齿弯曲强度计算[S]. 北京: 中国标准出版社, 2021.
[17] LUNDBERG G, PALMGREN A. Dynamic capacity of rolling bearings[J]. Journal of Applied Mechanics, 1949, 16(2): 165-172.
[18] 向东, 蒋李, 沈银华, 等. 风电齿轮箱在随机风载下的疲劳损伤计算模型[J]. 振动与冲击, 2018, 37(11): 115-123.
XIANG Dong, JIANG Li, SHEN Yinghua, et al. Fatigue damage calculation model for wind turbine gearboxes under random wind loads[J]. Journal of Vibration and Shock, 2018, 37(11): 115-123.
[19] 黎国猛, 梁益龙, 范航京, 等. 水射流喷丸预处理对42CrMo钢氮化后接触疲劳性能的影响[J]. 材料导报, 2019, 33(18): 3107-3112.
LI Guomeng, LIANG YiLong, FAN Hangjing, et al. Effects of water jet shot peening pretreatment on contact fatigue properties of 42CrMo steel after plasma nitriding[J]. Materials Reports, 2019, 33(18): 3107-3112.
[20] ZHANG X H, WEI P T, PARKER R G, et al. Study on the relation between surface integrity and contact fatigue of carburized gears[J]. International Journal of Fatigue, 2022, 165: 107203.
[21] 武忠睿, 陈地发, 吴吉展, 等. 含Ni量、渗氮层深度及喷丸强化对42CrMo 齿轮弯曲疲劳性能影响研究[J]. 中国机械工程, 2024, 35(3): 394-404.
WU Zhongrui, CHEN Difa, WU Jizhan, et al. Study on the influence of Ni content, nitriding hardening depth, and shot peening on the bending fatigue performance of 42CrMo gears[J]. China Mechanical Engineering, 2024, 35(3): 394-404.
[22] 陈地发, 刘怀举, 朱加赞, 等. 低碳合金钢18CrNiMo7-6齿轮弯曲疲劳试验研究与误差分析[J]. 重庆大学学报, 2023, 46(1): 1-15.
CHEN Difa, LIU Huaiju, ZHU Jiazhan, et al. Experimental study and error analysis on bending fatigue of low-carbon alloy steel 18CrNiMo7-6 gear[J]. Journal of Chongqing University, 2023, 46(1): 1-15.
[23] 刘惟信. 机械可靠性设计[M]. 北京: 清华大学出版社, 1996.
[24] SHIMIZU S, TSUCHIYA K, TOSHA K. Probabilistic stress-life (PSN) study on bearing steel using alternating torsion life test[J]. Tribology Transactions, 2009, 52(6): 807-816.
[25] PAVLOU D. A deterministic algorithm for nonlinear, fatigue‐based structural health monitoring[J]. Computer‐Aided Civil and Infrastructure Engineering, 2022, 37(7): 809-831.
[26] 袁修开, 吕震宙, 池巧君. 基于核密度估计的自适应重要抽样可靠性灵敏度分析[J]. 西北工业大学学报, 2008, 26(3): 297-302.
YUAN Xiukai, LV Zhenzhou, CHI Qiaojun. Achieving efficient estimation of reliability sensitivity of a multi-mode system without requiring knowledge of design point[J]. Journal of Northwestern Polytechnical University, 2008, 26(3): 297-302.
[27] 张明, 金峰. 结构可靠度计算[M]. 北京: 科学出版社, 2015.
[28] GB/T 3480—1997. 渐开线圆柱齿轮承载能力计算方法[S]. 北京: 中国标准出版社, 1997.
[29] LIU Y M, CHEN Y. Dynamic reliability evaluation of high-speed train gearbox based on copula function[J]. IEEE Access, 2022, 10: 51792-51803.
[30] 李霞. COPULA 方法及其应用[M]. 北京: 经济管理出版社, 2014.
[31] 谢里阳, 周金宇, 李翠玲, 等. 系统共因失效分析及其概率预测的离散化建模方法[J]. 机械工程学报, 2006, 42(1): 7.
XIE Liyang, ZHOU Jinyu, LI Cuiling, et al. Common cause failure analysis and discretely modeling for system probability prediction[J]. Journal of Mechanical Engineering, 2006, 42(1): 7.
PDF(3622 KB)

177

Accesses

0

Citation

Detail

Sections
Recommended

/