Seismic response analysis of offshore wind turbine in layered subsoils based on viscoelastic artificial boundary

CHEN Zhibo1, 2, LIU Haibo1, 2, CAO Guangwei1, 2, HE Ben3, ZENG Xuming4, PAN Shenggui4

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (3) : 291-300.

PDF(2766 KB)
PDF(2766 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (3) : 291-300.
EARTHQUAKE SCIENCE AND STRUCTURE SEISMIC RESILIENCE

Seismic response analysis of offshore wind turbine in layered subsoils based on viscoelastic artificial boundary

  • CHEN Zhibo1,2, LIU Haibo1,2, CAO Guangwei*1,2, HE Ben3, ZENG Xuming4, PAN Shenggui4
Author information +
History +

Abstract

In China, offshore seismic events are frequent, significantly impacting the stability of offshore wind power foundations and turbine structures. To accurately and effectively calculate the seismic dynamic response of offshore wind power structures, this study derives a formula for calculating equivalent nodal forces based on the viscoelastic artificial boundary within a three-dimensional layered soil framework, employing wave theory and Snell's Law. The accuracy of this formula is rigorously validated. Building upon this, using soil data from a wind farm site in Putian, Fujian Province, a comprehensive integrated numerical analysis model is developed. This model incorporates a 5 MW wind turbine-monopile system interacting with a layered seabed, facilitating seismic response analysis specific to offshore wind power installations. The study highlights varied responses of soil across different locations within the foundation during seismic events. Particularly, in shallow pile-soil interactions, proximity to the pile foundation correlates with reduced soil acceleration response, suggesting a restraining effect exerted by the pile foundation on soil acceleration around shallow piles. Moreover, the influence of the pile foundation on shear strain within soil layers at varying depths exhibits considerable disparity. Regarding wind turbine structures, the analysis reveals distinctive patterns: maximum displacement occurs at the tower's apex, while maximum acceleration is observed mid-tower, with peak stress concentrated in the tower's midsection.

Key words

viscous-elastic artificial boundary / equivalent nodal force / layered soil / monopile offshore wind turbine / seismic response 

Cite this article

Download Citations
CHEN Zhibo1, 2, LIU Haibo1, 2, CAO Guangwei1, 2, HE Ben3, ZENG Xuming4, PAN Shenggui4. Seismic response analysis of offshore wind turbine in layered subsoils based on viscoelastic artificial boundary[J]. Journal of Vibration and Shock, 2025, 44(3): 291-300

References

[1] Lysmer J, Kuhlemeyer R L. Finite Dynamic Model for Infinite Media[J]. Journal of the Engineering Mechanics Division, American Society of Civil Engineers, 1969, 95(4): 859–877.
[2] 刘晶波, 吕彦东. 结构-地基动力相互作用问题分析的一种直接方法[J]. 土木工程学报, 1998, 31(3): 55–64.
Liu Jing-bo, Lv Yan-dong. A direct method for analyzing the interaction between structure and foundation in dynamic motion[J] China Civil Engineering Journal, 1998, 31(3): 55-64.
[3] Deeks A J, Randolph M F. Axisymmetric Time‐Domain Transmitting Boundaries[J]. Journal of Engineering Mechanics, American Society of Civil Engineers, 1994, 120(1): 25–42.
[4] 刘云贺, 张伯艳, 陈厚群. 拱坝地震输入模型中黏弹性边界与黏性边界的比较[J]. 水利学报, 2006, 37(6): 758–763.
Liu Yun-he, Zhang Bo-yan, Chen Hou-qun. Comparison of spring-viscous boundary with viscous boundary for arch dam seismic input model[J]. Journal of Hydraulic Engineering, 2006(6): 758-763.
[5] 刘晶波, 李彬. 三维黏弹性静-动力统一人工边界[J]. 中国科学E辑:工程科学 材料科学, 2005, 35(9): 72–86.
Liu Jing-bo, Li Bin. Three-dimensional Viscoelastic Static-Dynamic Unified Artificial Boundary[J]. Science China E Journal: Engineering Science, Materials Science, 2005, 35(9): 72–86.
[6] 赵武胜, 陈卫忠, 郑朋强, 等. 地下工程数值计算中地震动输入方法选择及实现[J]. 岩石力学与工程学报, 2013, 32(8): 1579–1587.
Zhao Wu-sheng, Chen Wei-zhong, Zheng Peng-qiang, et al. Choice and implementation of seismic wave input method in numerical calculation for underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1579–1587.
 [7] 王文博, 李亚东, 唐孟雄, 等. 无限元边界在半无限域动力时域分析中的应用[J]. 建筑结构, 2021, 51(S2): 598–603.
Wang Wen-bo, Li Ya-dong, Tang Meng-xiong, et al. Application of infinite element boundary in dynamic time history analysis of semi-infinite domain. Building Structure, 2021, 51(S2): 598–603.
[8] 谭辉, 刘晶波, 王东洋, 等. 地下结构地震反应分析中人工边界条件和地震波动输入方法对比研究[J]. 工程力学, 2018, 35(S1): 212-216+222.
Tan Hui, Liu Jing-bo, Wang Dong-yang, et al. Comparison Study of Artificial Boundary Conditions and Seismic Wave Input Methods in Seismic Response Analysis of Underground Structures[J]. Engineering Mechanics, 2018, 35(S1): 212-216+222.
[9] 马笙杰, 迟明杰, 陈红娟, 等. 黏弹性人工边界在ABAQUS中的实现及地震动输入方法的比较研究[J]. 岩石力学与工程学报, 2020, 39(7): 1445–1457.
Ma Sheng-jie, Chi Ming-jie, Chen Hong-juan, et al. Implementation of viscous-spring boundary in ABAQUS and comparative study on seismic motion input methods[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 39(7): 1445–1457.
[10] 何建涛, 马怀发, 张伯艳, 等. 黏弹性人工边界地震动输入方法及实现[J]. 水利学报, 2010, 41(8): 960–969.
He Jian-tao, Ma Huai-fa, Zhang Bo-yan, et al. Method and realization of seismic motion input of viscous-spring boundary[J]. Journal of Hydraulic Engineering, 2010, 41(8): 960–969.
[11] 蒋新新. 复杂地基条件下黏弹性人工边界模型及其应用[D]. 大连: 大连理工大学, 2014.
Jiang Xin-xin. Research on the Visco-elastic Artific ial Boundary Models and The Applicability in Complex Foundation[D]. Dalian: Dalian University of Technology, 2014.
[12] 陈厚群. 坝址地震动输入机制探讨[J]. 水利学报, 2006, 37(12): 1417–1423.
Chen Hou-qun. Discussion on seismic input mechanism at dam site. Journal of Hydraulic Engineering, 2006, 37(12): 1417–1423.
[13] Ba Z, Gao X. Soil-Structure Interaction in Transversely Isotropic Layered Media Subjected to Incident Plane SH Waves[EB/OL].https://www.hindawi.com/journals/sv/2017/2834274/, 2017.
[14] 刘晶波, 杜义欣, 闫秋实. 黏弹性人工边界及地震动输入在通用有限元软件中的实现[J]. 防灾减灾工程学报, 2007, 27(S1): 37-42.
Liu Jing-bo, Du Yi-xin, Yan Qiu-shi. Sticky elastic artificial boundaries and seismic input implementation in general finite element software[J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(S1): 37-42.
[15] 尹刚, 赵兰浩, 李同春. 考虑成层地基的黏弹性人工边界模型[J]. 水利水电科技进展, 2019, 39(3): 87–94.
Yi Gang, Zhao Lan-hao, Li Tong-chun. Viscoelastic artificial boundary model considering layered foundation[J]. Advances in Science and Technology of Water Resources, 2019, 39(3): 87–94.
[16] GB50011—2010. 建筑抗震设计规范[S]. 北京,中国建筑工业出版社,2010.
GB50011—2010. Code for seismic design of buildings[S]. Beijing,China Building Industry Press,2010.
[17] J. Jonkman, S. Butterfield, W. Musial, et al. Definition of a 5-MW Reference Wind Turbine for Offshore System Development[R].NREL/TP-500-38060,Golden,Colorado: National Renewable Energy Lab, 2009.
[18] 石世刚, 翟恩地, 许成顺, 等. 转子-机舱组合体模型对海上风机结构特征频率和地震响应的影响[J]. 工程力学, 2023, 40(6): 19-27+36.
Li Shi-gang, Zhai En-di, Xu Chen-shun, et al. effects of rotor-nacelle assembly models on the structural natural frequencies and seismic response of offshore wind turbine[J]. Engineering Mechanics, 2023, 40(6): 19-27+36.
[19] Xun Zhang, Ai-lin Zhang, Xuechun Liu. Seismic performance of discontinuous cover-plate connection for prefabricated steel plate shear wall[J]. Journal of Constructional Steel Research, 2019, 160(1): 374–386.
[20] 张克绪,谢君斐. 土动力学[M]. 北京: 地震出版社, 2022.
Zhang Ke-xu, Xie Jun-fei. soil dynamics[M]. Beijing: Seismological Press, 2022.
[21] 刘晋超, 熊根, 朱斌, 等. 砂土海床中大直径单桩水平承载与变形特性[J]. 岩土力学, 2015, 36(2): 591–599.
Liu Jin-chao, Xiong Gen, Zhu Bin, et al. Bearing capacity and deflection behaviors of large diameter monopile foundations in sand seabed[J]. Rock and Soil Mechanics, 2015, 36(2): 591–599.
[22] 费康. ABAQUS岩土工程实例详解[M]. 北京: 人民邮电出版社, 2017.
Fei Kang. Detailed explanation of ABAQUS geotechnical engineering examples[M]. Beijing: Posts & Telecommunications Press, 2017.
PDF(2766 KB)

200

Accesses

0

Citation

Detail

Sections
Recommended

/