Analysis of vibration characteristics of power function damping system

YANG Xiaotong1, SHEN Yongjun2, ZHANG Ruiliang2

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (4) : 91-97.

PDF(1944 KB)
PDF(1944 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (4) : 91-97.
VIBRATION THEORY AND INTERDISCIPLINARY RESEARCH

Analysis of vibration characteristics of power function damping system

  • YANG Xiaotong1,SHEN Yongjun*2,ZHANG Ruiliang2
Author information +
History +

Abstract

The forced vibration of a single degree-of-freedom system with power function damping under simple harmonic excitation is analyzed. The expression of equivalent linear damping is derived by averaging method and equivalent linearization. It is found that the vibration reduction effect of nonlinear damping is closely related to its coefficient and exponent. The steady-state solution of the amplitude and phase of the main system is further obtained, and the correctness of the steady-state solution is verified by numerical simulation. The factors affecting the vibration reduction effect of nonlinear damping are analyzed by the changing curve of equivalent linear damping and the amplitude-frequency response curve. The study shows that the increase of damping ratio will shift the resonance peak to the left and improve the vibration reduction performance, but the damping ratio needs to be controlled within an appropriate range to achieve the best vibration reduction effect. In addition, when the damping ratio is small, the increase of damping index can enhance the damping effect, but too large damping ratio will cause the vibration reduction effect of nonlinear damping to be lower than that of linear damping. This results provide an important basis and theoretical foundation for structural vibration reduction design and optimization. 

Key words

power function damping / average method / equivalent linear damping / vibration control

Cite this article

Download Citations
YANG Xiaotong1, SHEN Yongjun2, ZHANG Ruiliang2. Analysis of vibration characteristics of power function damping system[J]. Journal of Vibration and Shock, 2025, 44(4): 91-97

References

[1] 陆泽琦,陈立群.非线性被动隔振的若干进展[J].力学学报,2017,49(03):550-564.
Lu Zeqi, Chen Liqun.Some recent progresses in nonlinear passive isolations of vibrations [J]. Theoretical and Applied Mechanics, 2017,49(03):550-564.
[2] 徐道临,张月英,周加喜,等.一种准零刚度隔振器的特性分析与实验研究[J].振动与冲击,2014,33(11):208-213.
Xu Daolin, Zhang Yueying, Zhou Jiaxi, et al. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness [J]. Journal of Vibration and Shock, 2014, 33(11): 208-213.
[3] 王超新,孙靖雅,张志谊,等.最优阻尼三参数隔振器设计和试验[J].机械工程学报,2015,51(15):90-96.
Wang Chaoxin, Sun Jingya, Zhang Zhiyi, et al. Design and Experiment of a Three-parameter Isolation System withOptimal Damping [J]. Journal of Mechanical Engineering,2015,51(15):90-96.
[4] Peng Z K, Lang Z Q, Zhao L, et al. The force transmissibility of MDOF structures with a non-linear viscous damping device [J]. International Journal of Non-Linear Mechanics, 2011, 46(10): 1305-1314.
[5] Peng Z K, Meng G, Lang Z Q, et al. Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method [J]. International Journal of Non-Linear Mechanics, 2012, 47(10): 1073-1080.
[6] Tang B, Brennan M J. A comparison of two nonlinear damping mechanisms in a vibration isolator [J]. Journal of Sound and Vibration, 2013, 332(3): 510-520.
[7] Xiao Z, Jing X, Cheng L. The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations [J]. Journal of Sound and Vibration, 2013, 332(5): 1335-1354.
[8]李锐,杜鹏飞,徐文韬,等.基于无量纲分析的磁流变隔振器阻尼参数优化[J].振动.测试与诊断,2014,34(01):39-45+188.
Li Rui, Du Pengfei, Xu Wentao, et al. On the Friction-Induced Squeal of Pin-on-Disc System [J]. Journal of Vibration,Measurement & Diagnosis,2014,34(01):39-45+188.
[9]张春辉, 赵建华, 汪玉, 等. 平方阻尼在冲击隔离中的特性与作用研究 [J]. 船舶力学, 2014, 18(7): 834-840.
Zhang Chunhui, Zhao Jianhua, Wang Yu, et al. Effect of quadratic damping in a shock isolation system [J]. Journal of Ship Mechanics, 2014, 18(7): 834-840.
[10]王志豪,潘侠圭,武传宇,等.杠杆式隔振器的理论模型及隔振特性研究[J].振动与冲击,2022,41(14):145-150+225. 
Wang Zhihao, Pan Xiagui, Wu Chuanyu, et al. Theoretical model and vibration isolation characteristics of a lever-type vibration isolator [J]. Journal of Vibration and Shock, 2022,41(14):145-150+225.
[11]张运法, 孔宪仁. 具有组合非线性阻尼的非线性能量阱振动抑制响应分析[J]. 力学学报, 2023, 55(4): 972-981.
Zhang Yunfa, Kong Xianren. Analysis on vibration suppression response of nonlinear energysink with combined nonlinear damping [J]. Theoretical and Applied Mechanics, 2023, 55(4): 972-981.
[12]刘海超,闫明,孙自强,等.几何非线性黏性阻尼隔振系统的传递率特性[J].振动.测试与诊断,2023,43(06):1191-1197+1248.
Liu Haichao, Yan Ming, Sun Ziqiang, et al. Transmissibility Characteristics of Geometrically Nonlinear Viscous Damping Vibration Isolation System [J]. Journal of Vibration,Measurement & Diagnosis, 2023, 43(06): 1191-1197+1248.
[13] Umair M, Hou Z. Displacement and Force Transmissibility of a High-Static-Low-Dynamic-Stiffness Isolator with Geometric Nonlinear Damping [J]. Journal of Vibration Engineering & Technologies, 2024: 1-8.
[14] Li Y, Tan P, Li S. Improving the control performance of optimal tuned inerter damper via nonlinear eddy current damping[J]. Nonlinear Dynamics, 2024, 112(1): 331-352.
[15] 陈予恕. 非线性振动[M]. 天津:天津科学技术出版社, 1983.
Chen Yushu. Nonlinear vibration [M]. Tianjin: Tianjin Science and Technology Press, 1983.
[16] 褚亦清, 李翠英. 非线性振动分析[M]. 北京:北京理工大学出版社, 1996.
Chu Yiqing, Li Cuiying. Analysis of Nonlinear Vibrations [M]. Beijing: Beijing Institute Of Technology Press, 1996.
[17] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析* [J]. 物理学报, 2012, 61(11): 158-163.
Shen Yongjun, Yang Shaopu, Xing Haijun. Dynamical analysis of linear single degree-of-freedomoscillator with fractional-order derivative* [J]. ActaPhysica Sinica, 2012, 61(11): 158-163.
[18] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析 (Ⅱ)[J]. 物理学报, 2012, 61(15): 55-63.
Shen Yongjun, Yang Shaopu, Xing Haijun. Dynamical analysis of linear SDOF oscillator with fractional-order derivative(Ⅱ) [J]. ActaPhysica Sinica, 2012, 61(15): 55-63.
[19] 韦鹏, 申永军, 杨绍普. 分数阶 van der Pol 振子的超谐共振[J]. 物理学报, 2014, 63(1): 47-58.
Wei Peng, Shen Yongjun, and Yang Shaopu. Super-harmonic resonance of fractional-order van der Pol oscillator [J]. ActaPhysica Sinica, 2014, 63(1): 47-58.
[20]唐建花,李向红,王敏,等.广义分数阶van der Pol-Duffing振子的动力学响应与隔振效果研究[J].振动与冲击,2022,41(01):10-18.
Tang Jianhua, Li Xianghong, Wang Min, et al. Dynamic response and vibration isolation effect of generalized fractional-order van der Pol-Duffing oscillator [J]. Journal of Vibration and Shock, 2022,41(01):10-18.
[21]  DEN HARTOG J P . 机械振动学[M]. 谈峯译. 北京: 科学出版社,1961.
J.P., Deng Hartog. Mechanical Vibration [M]. Tanfeng Translation. Beijing: Science Press, 1961.
[22] Bandstra, J. P. Comparison of Equivalent Viscous Damping and Nonlinear Damping in Discrete and Continuous Vibrating Systems [J]. Journal of Vibration & Acoustics, 1983, 105(3):382-392. 
PDF(1944 KB)

167

Accesses

0

Citation

Detail

Sections
Recommended

/