Parameters acquisition of the constitutive model of rubber material used in isolators and the impact performance simulation

WANG Yaoyao1, LUO Zhuhui1, WANG Han1, ZHOU Xisheng2, WANG Hu2, CHEN Shilu1

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (6) : 130-136.

PDF(1490 KB)
PDF(1490 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (6) : 130-136.
SHOCK AND EXPLOSION

Parameters acquisition of the constitutive model of rubber material used in isolators and the impact performance simulation

  • WANG Yaoyao1,LUO Zhuhui*1,WANG Han1,ZHOU Xisheng2,WANG Hu2,CHEN Shilu1
Author information +
History +

Abstract

Due to the long lead time and high cost for the preparation of rubber isolator prototypes and impact performance testing, simulation analysis is needed to evaluate the feasibility of the design or selection of structure and material before the preparation of prototypes. Referring to the drop impact test method of isolator, a finite element model for impact performance simulation analysis of vibration isolators is established in LS-DYNA, and the Mooney-Rivlin-Maxwell model is chosen as the rubber visco-hyperelastic constitutive model. In order to obtain the parameters of the constitutive model of the rubber material under the impact condition, the rubber material used in the isolator is made into a sphere, and the impact test and finite element simulation analysis of the rubber sphere and steel plate are carried out. A generalized regression neural network (GRNN) is established, and the optimized GRNN model and test data are used to predict the parameters of the constitutive model of rubber material. Carry out the impact simulation and analysis of rubber isolator, the simulation is close to the test results, and the established finite element simulation and analysis model can be used to evaluate the impact performance of the isolator, which provides a reference method to carry out the simulation and analysis of the impact performance of rubber isolators and the acquisition of the parameters of the constitutive model of rubber material under the impact condition.

Key words

Generalized Regression Neural Network / Finite Element Method (FEM) / Constitutive model / Visco-hyperelastic / Rubber isolator / Collision characteristics

Cite this article

Download Citations
WANG Yaoyao1, LUO Zhuhui1, WANG Han1, ZHOU Xisheng2, WANG Hu2, CHEN Shilu1. Parameters acquisition of the constitutive model of rubber material used in isolators and the impact performance simulation[J]. Journal of Vibration and Shock, 2025, 44(6): 130-136

References

[1] 李  杨, 黄修长, 苏智伟, 等. 一种小动静比橡胶隔振器仿真与试验[J]. 噪声与振动控制, 2024, 44(02): 256-260.
LI Yang, HUANG Xiu-chang, SU Zhi-wei, et al. Numerical and experimental study of a rubber idolstor with low dynamic to static stiffness ratio [J]. Noise and Vibration Control, 2024, 44(02): 256-260.
[2] 刘雪莱, 韩愈琪, 江  健, 等. 液压阻尼型橡胶隔振器动态特性建模方法[J]. 振动与冲击, 2023, 42(17): 160-165+264.
LIU Xue-lai, HAN Yu-qi, JIANG Jian, et al. Modeling method for dynamic characteristics of hydraulic damping rubber isolator [J]. Journal of Vibration and Shock, 2023, 42(17) 160-165+264.
[3] 韩愈琪, 刘雪莱, 上官文斌. 基于本构神经网络橡胶隔振器动态特性建模[J]. 噪声与振动控制, 2023, 43(03): 265-270.
HAN Yu-qi, LIU Xue-lai, SHANGGUAN Wen-bin. Modeling of dynamic behaviors of rubber isolators using constitutive model and bp neural network [J]. Noise and Vibration Control, 2023, 43(03): 265-270.
[4] 束立红,吕志强,黄映云,等. 用落锤冲击试验机确定隔振器冲击刚度的新方法[J]. 振动与冲击,2005,(04): 111-114+144.
SHU Li-hong, LU Zhi-qiang, HUANG Ying-yun, et al. Method to confirm impact stiffness by drop hammer impact test machine [J]. Journal of Vibration and Shock, 2005 (04): 111-114+144.
[5] GB/T 15168-2013. 振动与冲击隔离器静、动态性能测试方法[S]. 北京: 中国标准出版社, 2013年.
GB/T 15168-2013. Vibration and shock isolators measuring method for its static and dynamic characteristics [S]. Beijing: Standards Press of China, 2013.
[6]  Dong G, Zhang X, Xie S, et al. Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring [J]. Mechanical Systems and Signal Processing, 2017, 86 188-203.
[7]  Zheng Y, Shangguan W B, Yin Z, et al. Design and modeling of a quasi-zero stiffness isolator for different loads [J]. Mechanical Systems and Signal Processing, 2023, 188: 110017.
[8] Fan H, Yang L, Tian Y, et al. Design of metastructures with quasi-zero dynamic stiffness for vibration isolation [J]. Composite Structures, 2020, 243: 112244.
[9] Coja M, Kari L. Using waveguides to model the dynamic stiffness of pre-compressed natural rubber vibration isolators [J]. Polymers, 2021, 13(11): 1703.
[10] Liu Y, Liu J, Pan G, et al. Modeling and analysis of a metal rubber vibration isolation system considering the nonlinear stiffness characteristics [J]. Review of Scientific Instruments, 2023, 94(1).
[11] 周相荣, 王  强, 涂耿伟. 弯曲型橡胶缓冲器冲击试验与 数值仿真[J]. 振动与冲击, 2007, (04): 97-100+172.
ZHOU Xiang-rong, WANG Qiang, TU Geng-wei. Impact test and simulation for rubber shock absorbers Of bending structures [J]. Journal of Vibration and Shock, 2007, (04): 97-100+172.
[12] Rahnavard R, Thomas J R. Numerical evaluation of steel rubber isolator with single and multiple rubber cores [J]. Engineering Structures, 2019, 198 (C): 109532-109532.
[13] Husnu D, Kemal A, Yashar B. On the performance of isotropic hyperelastic constitutive models for rubber-Like      materials: A state of the art review [J]. Applied Mechanics Reviews, 2021.
[14] Younesian D, Hosseinkhani A, Askari H, et al. Elastic and viscoelastic foundations: a review on linear and nonlinear vibration modeling and applications [J]. Nonlinear Dynamics, 2019, 97(1): 853-895.
[15] 周相荣, 王  强, 王宝珍. 一种基于Yeoh函数的非线性粘 超弹本构模型及其在冲击仿真中的应用[J]. 振动与冲击, 2007, (05): 33-37+151. 
ZHOU Xiang-rong, WANG Qiang, WANG Bao-zhen. A nonlinear viscoelastic hyperelastic constitutive model based on yeoh function and its application in impact simulati on [J]. Vibration and Shock, 2007, 26(5): 33-37.
[16] 初红艳, 孙冬明, 陈  其, 等. 橡胶超弹-黏弹模型建立及 结构动态响应[J]. 北京工业大学学报, 2019, 45(10): 927 -936.
CHU Hong-yan, SUN Dong-ming, CHEN Qi, et al. Construction of a rubber superelastic-viscoelastic model and analysis of dynamic response of structure [J]. Journal of Beijing University of Technology, 2019, 45(10): 927-936.
[17] Gong Y, Liu F, Zou R, et al. A simple anisotropic visco-hyperelastic constitutive model for cord-rubber composites [J]. Composites Communications, 2021, 28: 100957.
[18] Yude X, Shuchuan H, Meng H, et al. Parameter calibration and numerical algorithm realization of physically visco-hyperelastic constitutive model based on compression experiment of EPDM [J]. International Journal of Impact Engineering, 2023, 181
[19] 杨晓红, 许进升, 孙俊丽, 等. 三元乙丙材料粘超弹本构模 型研究[J]. 兵工学报, 2014, 35(08): 1205-1209.
YANG Xiao-hong, XU Jin-sheng, SUN Jun-li, et al. Research on visco-hyperelastic constitutive model of EPDM [J]. Acta Armamentari, 2014, 35(08): 1205-1209.
[20] Dal H, Gültekin O, Açıkgöz K. An extended eight-chain model for hyperelastic and finite viscoelastic response of rubberlike materials: Theory, experiments and numerical aspects [J]. Journal of the Mechanics and Physics of Solids, 2020, 145: 104159.
[21] Krogh A. What are artificial neural networks? [J]. Nature Biotechnology, 2008, 26(2): 195-197.
[22] Funahashi K I. On the approximate realization of continuous mappings by neural networks [J]. Neural Networks, 1989, 2(3): 183-192.
[23] 何小静, 上官文斌. 橡胶隔振器静态力-位移关系计算方法 的研究[J]. 振动与冲击, 2012, 31(11): 91-97.
HE Xiao-jing, SHANG GUAN-Wen bing. Calculating methods for force versus displacement relation of a rubber isolator [J]. Journal of Vibration and Shock, 2012, 31(11): 91-97.
[24] 樊永乐, 杨金水, 李  爽, 等. 碳纤维圆管增强超弹多孔 结构振动特性研究[J]. 振动与冲击, 2024, 43(11): 111-117.
FAN Yong-le, YANG Jin-shui, LI Shuang, et al. Vibration characteristics of carbon fiber circular tube reinforced super-elastic porous structure [J]. Journal of Vibration and Shock, 2024, 43(11): 111-117.
[25] 罗佳润. 海蚀环境下橡胶隔震支座性能劣化规律研究[D]. 广州: 广州大学, 2014.
LUO Jia-run. Research on the rubber isolation bearing performance deterioration law under marine corrosion enviroment [D]. Guangzhou: Guangzhou University, 2014.
[26] 陈  剑, 吕伍佯, 庄学凯, 等. 基于广义回归神经网络-柔 性最大值分类模型的轴承故障诊断方法[J]. 振动与冲击, 2020, 39(21): 1-8+16.
CHEN Jian, LU Wu-yang, ZHUANG Xue-kai, et al. Bearing fault diagnosis method based on GRNN-SOFTMAX classification model [J]. Journal of Vibration and Shock, 2020, 39(21): 1-8+16
[27] Yang L, Jianbing S, Xinyu W, et al. Inverse identification of hyperelastic constitutive parameters of skeletal muscles via optimization of AI techniques [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24(15): 11-13.
PDF(1490 KB)

784

Accesses

0

Citation

Detail

Sections
Recommended

/