Vibration characteristics analysis of  a gas turbine rotor system with air-gap eccentricity and rub-impact coupling fault

ZHU Rui1, 2, WANG Xinrou1, HAN Qingpeng1, WANG Xuechao1, JIANG Tianzhen1

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (6) : 38-46.

PDF(2085 KB)
PDF(2085 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (6) : 38-46.
VIBRATION THEORY AND INTERDISCIPLINARY RESEARCH

Vibration characteristics analysis of  a gas turbine rotor system with air-gap eccentricity and rub-impact coupling fault

  • ZHU Rui*1,2,WANG Xinrou1,HAN Qingpeng1,WANG Xuechao1,JIANG Tianzhen1
Author information +
History +

Abstract

The influence of electromagnetic coupling excitation may affect the normal performance of the rotor system of gas turbine generator set. In order to study the coupling fault of air gap eccentricity and rubbing, it is necessary to quantitatively analyze the influence of rotational speed, excitation current and compound eccentric parameters on the dynamic response of the system. In this paper, by analyzing the change of air gap magnetic field energy in the case of air gap compound eccentricity, the analytical expressions of unbalanced magnetic pulling force and rubbing force caused by compound eccentricity are established. On this basis, the dynamic equations of double-span rotor with unbalanced magnetic pulling force fault and rub-impact fault are established and solved numerically by Runge-Kutta method. The results show that the influence of unbalanced magnetic pull on the dynamic response of the system increases obviously with the increase of rotational speed. The eccentricity of composite air gap leads to the increase of multiple frequency doubling components. The research results of this paper can provide a theoretical basis for the fault diagnosis of rotor system.

Key words

Two-span Rotor / Composite air-gap eccentric / Rub-impact / Electromagnetic excitati 

Cite this article

Download Citations
ZHU Rui1, 2, WANG Xinrou1, HAN Qingpeng1, WANG Xuechao1, JIANG Tianzhen1. Vibration characteristics analysis of  a gas turbine rotor system with air-gap eccentricity and rub-impact coupling fault[J]. Journal of Vibration and Shock, 2025, 44(6): 38-46

References

[1] 郑近德, 潘海洋, 程军圣. 均值优化经验模态分解及其在转子故障诊断中的应用[J]. 机械工程学报, 2018, 54(23): 93-101.
ZHENG Jinde, PAN Haiyang, CHENG Junsheng. Mean-optimized empirical mode decomposition and its application in rotor fault diagnosis[J]. Journal of Mechanical Engineering, 2018, 54(23): 93 -101.
[2] XU H, WANG N, JIANG D, et al. Dynamic characteristics and experimental research of dual-rotor system with rub-impact fault[J]. Shock and Vibration, 2016, 2016.
[3] 罗跃纲, 闻邦椿. 双跨转子—轴承系统裂纹—碰摩耦合故障的稳定性[J]. 机械工程学报, 2008, (04): 123-127+132.
LUO Yuegang, WEN Bangchun. Stability of the two-span rotor-bearing system perio with coupling faults of crack and rub-impact[J]. Journal of Mechanical Engineering, 2008, (04): 123-127+132.
[4] ZHANG X T, YANG Y F, MA H, et al. A novel diagnosis indicator for rub-impact of rotor system via energy method[J]. Mechanical Systems and Signal Processing, 2023, 185.
[5] PHADATARE H P, PRATIHER B. Large deflection model for rub-impact analysis in high-speed rotor-bearing system with mass unbalance[J]. International Journal of Non-Linear Mechanics, 2021, 132.
[6] WANG Y F, HUANG L H, LI Y. Nonlinear vibration and stability of a jeffcott rotor under unbalanced magnetic excitation[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2007, 8(3): 375-384.
[7] XU X, HAN Q, CHU F. A four degrees-of-freedom model for a misaligned electrical rotor[J]. Journal of Sound and Vibration, 2015, 358: 356-374.
[8] LIU F, XIANG C, LIU H, et al. Model and experimental verification of a four degrees-of-freedom rotor considering combined eccentricity and electromagnetic effects[J]. Mechanical Systems and Signal Processing, 2022, 169.
[9] 唐贵基, 邓玮琪, 何玉灵. 不同种类气隙偏心故障对汽轮发电机转子不平衡磁拉力的影响[J]. 振动与冲击, 2017, 36(15): 1-8.
TANG Guiji, DENG Weiqi, HE Yuling. Effect of different kinds of air-gap eccentricity faults on rotor UMP of a turbo-generator[J]. Journal of Vibration and Shock, 2017, 36(15): 1-8.
[10] 万书亭, 彭勃. 气隙静偏心与转子匝间短路下电磁转矩特性区分[J]. 中国工程机械学报, 2021, 19(01): 65-71.
WAN Shuting, PENG Bo. Electromagnetic torque characteristic identification among static air-gap eccentricity and rotor interturn short circuit[J]. Chinese Journal of Construction Machinery, 2021, 19(01): 65-71.
[11] 张金剑, 张雷克, 吴嵌嵌, et al. 动静偏心电磁激励下水电机组碰摩转子-轴承系统弯扭耦合振动特性分析[J]. 振动与冲击, 2021, 40(12): 236-245.
ZHANG Jinjian, ZHANG Leike, WU Qianqian, et al. Coupled bending-torsional vibration characteristics analysis for a rotor-bearing system with rub-impact of hydraulic generating set under both dynamic and static eccentric electromagnetic excitation[J]. Journal of Vibration and Shock, 2021, 40(12): 236-245.
[12] 周生通, 朱经纬, 肖乾, et al. 初始静偏心与重力载荷对动车牵引电机转子轴心轨迹的影响[J]. 机械工程学报, 2020, 56(17): 145-154.
ZHOU Shengtong, ZHU Jingwei, XIAO Qian, et al. Initial static eccentricity and gravity load on rotor orbit of emu traction motor[J]. Journal of Mechanical Engineering, 2020, 56(17): 145-154.
[13] 李永刚, 贺鹏康, 马明晗, et al. 基于轴承座振动特性的大型同步调相机偏心故障程度诊断方法[J]. 振动与冲击, 2022, 41(14): 77-83.
LI Yonggang, HE Pengkang, MA Minghan, et al. Diagnosis method for the eccentricity fault degree of a large synchronous condenser based on vibration characteristics of the bearing seat[J]. Journal of Vibration and Shock, 2022, 41(14): 77-83.
[14] LIU F, XIANG C, LIU H, et al. Model and experimental verification of a four degrees-of-freedom rotor considering combined eccentricity and electromagnetic effects[J]. Mechanical Systems and Signal Processing, 2022, Vol.169: 108740.
[15] 邱家俊编著. 机电分析动力学[M]. 北京: 科学出版社, 1992.
QIU Jiajun, ed. Electromechanical analysis of dynamics [M]. Beijing: Science Press, 1992.
[16] 《航空发动机设计手册》总编委会编. 航空发动机设计手册(第19册) [M]. 北京: 航空工业出版社, 2000.
General Editorial Committee of Aero Engine Design Manual, ed. Aero Engine Design Manual (Volume 19) [M]. Beijing: Aviation Industry Press, 2000.
PDF(2085 KB)

345

Accesses

0

Citation

Detail

Sections
Recommended

/