Life state recognition of rolling bearings based on MS-IDRSN

CHEN Renxiang1, ZHANG Yanfeng1, YANG Lixia2, LIANG Dong1, LI Jialin1, YAN Kaibo1

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (7) : 217-224.

PDF(2298 KB)
PDF(2298 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (7) : 217-224.
FAULT DIAGNOSIS ANALYSIS

Life state recognition of rolling bearings based on MS-IDRSN

  • CHEN Renxiang1, ZHANG Yanfeng1, YANG Lixia*2, LIANG Dong1, LI Jialin1, YAN Kaibo1
Author information +
History +

Abstract

A multi-scale improved deep residual shrinkage network (MS-IDRSN) based rolling bearing life state identification method is proposed to address the issue of reduced domain adaptation performance caused by background noise interference in spatial rolling bearing data under different operating conditions, resulting in a decrease in accuracy of life state recognition. Firstly, an improved threshold function is introduced into the contraction layer of the deep residual contraction network to enhance the network's noise resistance and reduce the loss of life state information during the denoising process; Then, using convolutional kernels of different sizes to obtain deep fusion denoising features, the generalization ability of the features in noisy backgrounds is improved. Finally, by minimizing the maximum mean difference and adapting the feature distribution of the source domain and target domain features, the recognition of bearing life status under different operating conditions is achieved. The applicability and effectiveness of MS-IDRSN were validated on the PRONOSTIA dataset and self-test bearing dataset, and the results showed that the proposed method has good noise resistance and generalization performance. Under high noise conditions, compared with the comparison method, the accuracy of life state recognition improved by 7.6% to 46.5%.

Key words

Rolling bearings / Life state recognition / Threshold function / Multi-scale feature fusion / Deep residual shrinkage network

Cite this article

Download Citations
CHEN Renxiang1, ZHANG Yanfeng1, YANG Lixia2, LIANG Dong1, LI Jialin1, YAN Kaibo1. Life state recognition of rolling bearings based on MS-IDRSN[J]. Journal of Vibration and Shock, 2025, 44(7): 217-224

References

[1] DONG S, WEN G, LEI Z, et al. Transfer learning for bearing performance degradation assessment based on deep hierarchical features[J]. ISA Transactions, 2021, 108: 343-355.
[2] 吴昊年, 陈仁祥, 胡小林, 等. 改进均衡分布适配的滚动轴承寿命阶段识别[J]. 振动工程学报, 2021, 34(01): 194-201.
WU Haonian, CHEN Renxiang, HU Xiaolin, et al. Improving the Life Stage Identification of Rolling Bearings with Balanced Distribution Adaptation [J] Journal of Vibration Engineering, 2021, 34 (01): 194-2011.
[3] 刘峰良, 李锋, 汤宝平, 等. 基于类对比簇分配异构迁移学习的空间滚动轴承寿命阶段识别[J]. 工程科学与技术, 2024, 56(01): 256-266.
LIU Fengliang, LI Feng, TANG Baoping, et al. Space Rolling Bearing Life Stage Identification Based on Heterogeneous Transfer Learning of Class Comparison Cluster Allocation [J] Engineering Science and Technology, 2024, 56 (01): 256-266.
[4] 王腾, 李锋, 罗玲, 等. 基于双尺度柔性原型迁移网络的空间滚动轴承寿命阶段识别[J]. 机械工程学报, 2022, 58(21): 114-125.
WANG Teng, LI Feng, LUO Ling, et al. Life stage identification of spatial rolling bearings based on dual scale flexible prototype transfer network [J] Journal of Mechanical Engineering, 2022, 58 (21): 114-125.
[5] Dong S J, Sheng J L, Tang B P, et al. Bearings in simulated space conditions running state detection based on Tsallis entropy-KPCA and optimized fuzzy c-means model[J]. Noise Control Engineering Journal, 2017, 65(2):62-70.DOI:10.3397/1/376426.
[6] ZHANG B,ZHANG S H,LI W H. Bearing performance degradation assessment using long short-term memory recurrent network[J]. Computers in Industry,2019,106:14-29.
[7] WANG H D, DENG S E, YANG J X, et al. Parameter-Adaptive VMD Method Based on BAS Optimization Algorithm for Incipient Bearing Fault Diagnosis[J]. Mathematical Problems in Engineering, 2020, 2020: 5659618.
[8] 陈仁祥, 张晓, 朱玉清, 等. 基于深度残差收缩迁移网络的复杂工况下滚动轴承故障诊断[J]. 振动与冲击, 2024, 43(03): 194-200.
CHEN Renxiang, ZHANG Xiao, ZHU Yuqing, et al. Fault diagnosis of rolling bearings under complex working conditions based on deep residual shrinkage transfer network [J] Vibration and Shock, 2024, 43 (03): 194-200.
[9] 杨大春, 孙宇林, 张春萌, 等. 基于改进残差网络深度子域适应的变工况下滚动轴承故障诊断方法[J/OL]. 轴承, 2022. https://link.cnki.net/urlid/ 41.1148.TH.20221226. 1556.002.
YANG Dachun, SUN Yulin, ZHANG Chunmeng, et al. A fault diagnosis method for rolling bearings under variable operating conditions based on improved residual network deep subdomain adaptation [J] Bearings, 2022 .https://link.cnki.net/urlid/41.1148. TH.20221226. 1556.002.
[10] 董绍江, 裴雪武, 汤宝平, 等. 基于FNER性能退化指标及IDRSN的滚动轴承寿命状态识别方法[J]. 机械工程学报, 2021, 57(15): 105-115.
DONG Shaojiang, PEI Xuewu, TANG Baoping, et al. A rolling bearing life state recognition method based on FNER performance degradation index and IDRSN * [J] Journal of Mechanical Engineering, 2021, 57 (15): 105-115
[11] ZHAO M, ZHONG S, FU X, et al. Deep Residual Shrinkage Networks for Fault Diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, PP(99): 1-1.
[12] NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: an experimental platform for bearings accelerated degradation tests[C]. IEEE International Conference on Prognostics and Health Management. Besanon:PHM,2012.
[13] 王志颖, 李天福, 许文纲, 等. 降噪混合注意力变分自编码器及其在轴向柱塞泵故障诊断中的应用[J/OL]. 机械工程学报, 2023:. https:// link.cnki.net/urlid/11.2187.TH.20230628.1423.028.
WANG Zhiying, LI Tianfu, XU Wengang, et al. Noise Reduction Hybrid Attention Variational Autoencoder and Its Application in Fault Diagnosis of Axial Plunger Pump [J] Journal of Mechanical Engineering, 2023:. https://link.cnki.net/urlid/11.2187.TH.20230628.1423.028.
[14] 王赛赛, 陈捷, 王华, 等. 基于改进DBN的回转支承寿命状态识别[J]. 振动与冲击, 2020, 39(07): 238-244+259.
WANG Saisai, CHEN Jie, WANG Hua, et al Life state identification of rotary bearings based on improved DBN [J] Vibration and Shock, 2020, 39 (07): 238-244+259.
PDF(2298 KB)

Accesses

Citation

Detail

Sections
Recommended

/