Advance in study on aerodynamic elasticity of aerospace vehicles

YUAN Kaihua, TIAN Haitao, FU Zhichao, LIU Kai

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (7) : 275-285.

PDF(2928 KB)
PDF(2928 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (7) : 275-285.
AERONAUTICS AND ASTRONAUTICS

Advance in study on aerodynamic elasticity of aerospace vehicles

  • YUAN Kaihua*, TIAN Haitao, FU Zhichao, LIU Kai
Author information +
History +

Abstract

Aerospace vehicles undergo stages of takeoff, high-speed flight, orbit insertion and re-entry as well as return, and they are subjected to harsh aerodynamic force, heat, oxygen, noise and other composite actions. As valuable vehicles freely traveling between atmosphere and orbital space, they require higher structural lightweighting, low structural stiffness and prominent thermal-aerodynamic-elastic problems, which directly affect aerodynamic performance, flight envelope and structural safety of aerospace vehicles. Here, typical aerodynamic-elastic problems faced by aerospace vehicles were elaborated in detail with a focus on effects of thermal elastic deformation on aerodynamic characteristics and flight trajectories, changes in intake performance of air breathing engines coupled with thermal-aerodynamic elasticity, thermal flutter problems, wall panel aerodynamic elasticity problems, thermal-aerodynamic elasticity problems under high temperature oxidation and aerodynamic-structural-motion coupled problems in morphing process. Combined with analysis and design requirements of aerospace vehicles, a targeted review was presented about latest developments in reduced order model (ROM) for thermal-aerodynamic-elastic analysis, uncertainty analysis and wind tunnel test. Prospects for future development directions were presented.

Key words

aerospace vehicle / thermal-aerodynamic elasticity / flutter / reduced order model / uncertainty / wind tunnel test

Cite this article

Download Citations
YUAN Kaihua, TIAN Haitao, FU Zhichao, LIU Kai. Advance in study on aerodynamic elasticity of aerospace vehicles[J]. Journal of Vibration and Shock, 2025, 44(7): 275-285

References

[1]张红文, 关成启, 佘文学.  空天飞行器—从飞机场到航天港[M]. 北京: 北京理工大学出版社, 2015.
[2]ZHOU J X,XIAO Y T,LIU K. Preliminary analysis for a two-stageto-orbit reusable launch vehicle[C]. The 20th  AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Glasgow: AIAA, 2015.
[3]TANG S F, ZHANG J. Development status and trend of the world’s major aerospace vehicles[J]. Space International,2017 (10): 30-37.
[4]魏毅寅. 组合动力空天飞行若干科技关键问题[J]. 空天技术, 2022(1): 1-12.
[5]RAMADA K P. Summary report of the orbital X-34 wing static aeroelastic study[R]. Hampton:National Aeronautics and Science Administration,2001.
[6]YE K, YE Z Y, FENG Z H, et al. Numerical investigation on the aerothermoelastic deformation of the hypersonic wing[J]. Acta Astronautica, 2019,160: 76-89.
[7]罗金玲, 康宏琳, 操小龙. 吸气式高超声速飞行器空气动力学[M]. 北京: 科学出版社, 2021.
[8]代光月, 曾磊, 桂业伟,等. 考虑力/热/结构多场耦合效应的飞行弹道预测[J]. 航空学报, 2018, 39(12): 1-12.
DAI Guangyue, ZENG Lei, GUI Yewei, et al. Prediction of flight trajectory considering fluid-thermal-structural coupling effect[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 1-12.
[9]向锦武, 曾开春, 聂璐. 考虑弹性影响的乘波体飞行动力学特性[J]. 北京航空航天大学学报, 2012,38(10): 1306-1310.
XIANG Jinwu, ZENG Kaichun, NIE Lu. Elastic effects on flight mechanics of waverider[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012,38(10): 1306-1310.
[10]YAO S, WU Z G, YANG C. Trajectory simulation of flexible missles and the effect of flexibility on hit precision[C]//AIAA Atmospheric Flight Mechanics Conference. Maryland:AIAA, 2014.
[11]程萌,苑凯华, 田海涛. 高速飞行器气动-热-结构耦合作用下的进气性能研究[C]//第六届全国进气道/尾喷管学术交流会. 西宁:[s.n.], 2018.
[12]KLINE H, PALACIOS F, ALONSO J J. Sensitivity of the performance of a 3-dimensional hypersonic inlet to shape deformations[C]//19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Atlanta, GA:AIAA, 2014.
[13]FRAUHOLZ S, HOSTERS N., et al, Fluid-Structure Interacton in the Context of a Scramjet Intake[C]// 44th AIAA Fluid Dynamics Conference. Atlanta, GA:AIAA, 2014.
[14]YAO C, LIU Z S, WEI J Q, et al. Effect of wall deformation on aerodynamic performance for mixed compression intake[C]//44th AIAA Fluid Dynamics Conference. Atlanta, GA: AIAA, 2014.
[15]叶坤, 张艺凡, 叶正寅. 高超声速进气道复杂内流热气动弹性研究[J]. 气体物理, 2023, 8(6): 1-19.
YE Kun, ZHANG Yifan, YE Zhengyin. Research on aerothermoelasticity for hypersonic inlet with complex internal flow[J]. Physics of Gases, 2023, 8(6): 1-19.
[16]THERESA S F, BEVERLEY J M, STANISLAV G. Effect of coherent structures on aero-optic distortion in a turbulent boundary layer[J]. American Institute of Aeronautics and Astronautics, 2019,57(7): 2828-2839.
[17]孙喜万, 刘伟. 气动光学效应研究进展[J].力学进展,2020, 50: 249-309.
SUN Xiwan, LIU Wei. Research progress of aero-optical effect[J]. Advances in Mechanics, 2020, 50: 249-309.
[18]JACK J M, PERETZ P F. Aeroelastic and aerothermoelastic analysis in hypersonic flow: past, present, and future[J]. AIAA Journal, 2011, 49(6): 1089-1122.
[19]BLADES E L,RUTH  R, FUHRMANN H D. Aeroelastic analysis of the X-34 launch vehicle[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. St. Louis, MO:AIAA, 1999.
[20]PAK C G. Aeroservoelastic stability analysis of the X-43A stack[R]. Edwards: NASA Dryden Flight Research Center, 2008.
[21]BAKER R. F-117A structures and dynamics design considerations[C]//Plenary Session 8, AIAA Dynamics Specialist Conference. Dallas, TX: AIAA, 1992.
[22]ROGER R C, MAX L B. Metallic thermal-protection-system panel flutter strudy[J]. Journal of Spacecraft and Rockets, 2004,41(2): 207-212.
[23]GRAY C E, MEI C, SHORE C P. Finite element method for large-amplitude two-dimensional panel flutter at hypersonic speeds[J]. AIAA Journal, 1990, 29(2): 290-298.
[24]夏巍, 杨志春. 超音速气流中受热壁板的稳定性分析[J]. 力学学报, 2007, 39(5): 602-609.
XIA Wei, YANG Zhichun. Stability analysis of heated panels in supersonic air flow[J]. Chinese Journal of Theoretical and Applied Mechanic, 2007, 39(5): 602-609.
[25]杨志春, 刘丽媛, 王晓晨. 高超声速飞行器受热壁板的气动弹性声振分析[J]. 航空学报, 2016, 36(12): 3578-3587.
YANG Zhichun, LIU Liyuan, WANG Xiaochen. Analysis of aeroelastic vibro-acoustic response for heated panel of hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 36(12): 3578-3587.
[26]Exploring the response of a thin, flexible panel to shock-turbulent boundary-layer interaction[J]. Journal of Sound and Vibration, 2018, 142(1): 85-104.
[27]ZHOU R C, LAI Z H, XUE D Y, et al. Suppression of nonlinear panel flutter with piezoelectric actuators using finite element method[J]. AIAA Journal, 1995, 33(6): 1098-1105.
[28]苑凯华, 邱志平. 压电复合材料壁板颤振的控制[J]. 北京航空航天大学学报, 2009, 35(12): 1429-1433.
YUAN Kaihua, QIU Zhiping. Flutter control of composite panels with embedded piezoelectric materials [J] . Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(12): 1429-1433.
[29]HOLDEN M. Historical review of experimental studies and prediction methods to describe laminar and turbulent shock wave/boundary layer interactions in hypersonic flows[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reno:AIAA, 2006.
[30]FRAUHOLZ S, HOSTERS N M, REINARTZ B, et al. Fluid-structure interaction in the context of csramhet intake[C]//44th AIAA Fluid Dynamics Conference. Atlanta, GA:AIAA, 2014.
[31]张云峰. 高速气流作用下冲压发动机进气道壁板结构振动特性研究[D]. 哈尔滨:哈尔滨工业大学,2007.
[32]叶坤, 叶正寅, 屈展. 高超声速进气道气动弹性的影响研究[J]. 推进技术, 2016, 37(12): 2270-2277.
YE Kun, YE Zhengyin, QU Zhan. Effects of aeroelasticity on performance of hypersonic inlet[J]. Journal of Propulsion Technology, 2016, 37(12): 2270-2277.
[33]ZHANG Y F, YE K, YE Z Y. On the aeroelastic bifurcation of a flexible panel subjected to cavity pressure and inviscid oblique shock[J]. Journal of Fluid Mechanics, 2024, 986(28): 1-27.
[34]LI D C, ZHAO S W, DARONCH A, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100: 46-62.
[35]程归, 杨广, 郭宏伟,等. 高超声速变体飞行器关键技术研究[J]. 航空科学技术, 2024, 35(5): 28-44.
CHENG Gui, YANG Guang, GUO Hongwei, et al. Review on key technologies for hypersonic morphing aircraft[J]. Aeronautical Science & Technology, 2024, 35(5): 28-44.
[36]XIE P Z, YE K, XIE P T, et al. Supersonic flutter mechanism of “diamond-back” folding wings[J]. Aerospace Science and Technology, 2024, 153: 109396.
[37]PETER A, GNOFFO K, JAMES W, et al. Computational aerothermodynamic design issues for hypersonic vehicles[C]//AIAA International Space Planes and Hypersonic Systems and Technologies Conference.Orlando:AIAA,1997.
[38]BORRELLI R, RICCIO A, TESCIONE D, et al. Thermo-structural behaviour of an UHTC made mose cap of a reentry vehicle[J]. Acta Astronautica, 2009(65): 442-456.
[39]杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.
YANG Chao, XU Yun, XIE Changchuan. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11.
[40]叶正寅, 孟宪宗, 刘成,等. 高超声速飞行器气动弹性的进气进展与发展展望[J]. 空气动力学学报, 2018, 36(6): 984-994.
YE Zhengyin, MENG Xianzong, LIU Cheng, et al. Progress and prospects on aeroelasticity of hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2018, 36(6): 984-994.
[41]张章, 黄伟, 唐明章,等. 空间再入飞行器热气动弹性数值研究进展[J]. 航天返回与遥感, 2016, 37(1): 10-21.
ZHANG Zhang, HUANG Wei, TANG Mingzhang, et al. A review of aerothermoelastic numerical research on space reentry vehicles[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(1): 10-21.
[42]桂业伟, 刘磊, 耿湘人,等. 气动力/热与结构多场耦合计算策略与方法研究[J]. 工程热物理学报, 2015,36(5): 1047-1051.
GUI Yewei, LIU Lei, GENG Xiangren, et al. Study on the computation strategy and method of aero-dynamic-thermal-structural coupling problem[J]. Journal of Engineering Thermophysics, 2015,36(5): 1047-1051.
[43]苑凯华, 程萌. 高速气动力/热/结构多场耦合分析[J]. 战术导弹技术, 2017, 37(5): 41-45.
YUAN Kaihua, CHENG Meng. Aerodynamic/Thermal/Structural coupling analysis of hypersonic flight vehicles[J]. Tactical Missile Technology, 2017, 37(5): 41-45.
[44]YANG J Y, LIU Y L, ZHANG W W. Static aeroelastic modeling and rapid analysis of wings in transonic flow[J]. International Journal of Aerospace Engineering, 2018, 5421027: 1-12.
[45]李凯, 杨静媛, 高传强. 基于POD和代理模型的静气动弹性分析方法[J]. 力学学报, 2023, 55(2): 299-308.
LI Kai, YANG Jingyuan, GAO Chuanqiang. Static aeroelastic analysis based on proper of thogonal decomposition and surrogate model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 299-308.
[46]谢长川, 张铎耀, 安朝. 基于动响应数据的大柔性机翼结构降阶方法[J]. 北京航空航天大学学报, 2023, 49(6): 1319-1330.
XIE Changchuan, ZHANG Duoyao, AN Chao. Reduced order method for large flexible wing structure based on dynamic response data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1319-1330.
[47]SILVA W A. Application of nonlinear systems theory to transonic unsteady aerodynamic responses[J]. Journal of Aircraft, 1993, 30(5): 660-668.
[48]COWAN T J, ARENA A S, GUPTA K K. Accelerating computational fluid dynamics based aeroelastic predictions using system identification[J]. Journal of Aircraft, 2001, 38(1): 81-87.
[49]SKUJINS T, CESNIK C. Reduced-order modeling of hypersonic vehicle unsteady aerodynamics[C]//AIAA Atmospheric Flight Mechanics Conference. Toronto:AIAA, 2010.
[50]王梓伊, 张伟伟, 刘磊,等. 适用于复杂流动的热气动弹性降阶建模方法[J]. 航空学报, 2023, 44(4): 126807.
WANG Ziyi, ZHANG Weiwei, LIU Lei, et al. Reduced order aerothermoelastic framework suitable for complex flow[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126807.
[51]CHEN X, LIU L, ZHOU S, et al. Adding-point strategy for reduced-order hypersonic aerothermodynamics modeling based on fuzzy clustering[J]. Chinese Journal of Mechanical Engineering, 2016, 29(5): 983-991.
[52]张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 1-46.
ZHANG Weiwei, KOU Jiaqing, LIU Yilang. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 1-46.
[53]AMSALLEM D, FARHAT C. Interpolation method for adapting reduced-order models and application to aeroelasticity[J]. AIAA Journal, 2008, 46(7): 1803-1813.
[54]PROCTOR J L, BRUNTON S L, KUTZ J N. Dynamic mode decomposition with control[J]. Applied Dynamical Systems, 2016, 15(1): 142-161.
[55]CROWELL A R, MCNAMARA J J. Model reduction of computational aerothermodynamics for hypersonic aerothermoelasticityu[J]. AIAA Journal, 2012, 50(1): 74-84.
[56]张鸿志, 周强, 陈刚. 气动弹性系统本征正交分解降阶模型精度的参数影响研究[J]. 西安交通大学学报, 2016, 50(11): 104-109.
ZHANG Hongzhi, ZHOU Qiang, CHEN Gang. Effects of some parameters on the accuracy of aeroelastic proper orthogonal decomposition reduced order model[J]. Journal of Xi’an Jiaotong University, 2016, 50(11): 104-109.
[57]寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9): 2679-2689.
KOU Jiaqing, ZHANG Weiwei, GAO Chuanqiang. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2679-2689.
[58]PETTIT C. Uncertainty quantification in aeroelasticity: recent results and research challenges[J]. Journal of Aircraft, 2004, 41(5): 1217-1229.
[59]CHASSAING J C, NITSCHKE C T. Advances in parametric and model-form uncertainty quantification in canonical aeroelastic systems[J]. Aeroelasticity and Structural Dynamics, 2018, 14(7): 1-19.
[60]NICOLAS L, BRYAN G, PERETZ P F, et al. Uncertainty propagation in hypersonic aerothermoelastic analysis[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Orlando:AIAA, 2010.
[61]PHILIP B, BRET S, CHRISTOPHER S. Uncertainty quantification in aeroelasticity[J]. Annual Review of Fluid Mechanics, 2017, 49: 361-386.
[62]刘成, 叶正寅, 叶坤. 转捩位置对全动舵面热气动弹性的影响[J]. 力学学报, 2017, 49(4): 802-810.
LIU Cheng, YE Zhengyin, YE Kun. The effect of transition location on aerothermoelasticity of a hypersonic all-movable centrol surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 802-810.
[63]叶坤, 叶正寅, 屈展,等. 高超声速舵面热气动弹性不确定性及全局灵敏度分析[J]. 力学学报, 2016, 48(2): 278-289.
YE Kun, YE Zhengyin, QU Zhan. Uncertainty and sensitivity analysis of hypersonic control surface aerothermoelastic[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 278-289.
[64]苑凯华, 邱志平. 含不确定参数的复合材料壁板热颤振分析[J]. 航空学报, 2010, 31(1): 119-124.
YUAN Kaihua, QIU Zhiping. Thermal flutter analysis of composite panel with uncertain parameters[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 119-124.
[65]LAUTEN W T, LEVEY G M, ARMSTRONG W O. Investiga-tion of an all-movable control surface at a mach number of 6.86 for possible flutter[R]. Langley Field, Va.: Langley Aeronautical Laboratory, 1958.
[66]YOUNG L S. Effects of angle of attack and thickness ratio on the flutter of a rigid unswept diamond-airfoil-section wing at a mach number of 10.0[R]. Hampton, Va.:Langley Research Center, 1962.
[67]GOETZ R C. Effects of  leading-edge bluntness on flutter characteristics of some square-planform double-wedge airfoils at a mach number of 15.5[R].  Hampton:Langley Research Center, 1962.
[68]SPAIN C, ZEILER T A, BULLOCK E,et al. Flutter investigation of  all-moveable NASP-like wings at hypersonic speeds[C]//34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. La Jolla, CA:AIAA, 1993.
[69]SPOTTSWOOD S M, BEBERNISS T J, EASON T G. Exploring the response of a thin, flexible panel to shock-turbulent boundary-layer interaction[J]. Journal of Sound and Vibration, 2018, 142(1): 85-104.
[70]刘磊. 高超声速飞行器热气动弹性特性及相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2014.
[71]季辰, 刘子强, 李锋. 钝前缘梯形翼高超声速风洞颤振试验[J]. 气体物理, 2018, 3(1): 54-63.
JI Chen, LIU Ziqiang, LI Feng. Hypersonic Wind tunnel flutter test for a blunt-leading-edge delta wing[J]. Physics of Gases, 2018, 3(1): 54-63.
PDF(2928 KB)

Accesses

Citation

Detail

Sections
Recommended

/