High-fidelity time-domain conversion method for nonlinear responses of spring-suspended segment model based on HT#br#

ZHOU Jinyu, MENG Xiaoliang

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (9) : 119-126.

PDF(3243 KB)
PDF(3243 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (9) : 119-126.
VIBRATION THEORY AND INTERDISCIPLINARY RESEARCH

High-fidelity time-domain conversion method for nonlinear responses of spring-suspended segment model based on HT#br#

  • ZHOU Jinyu, MENG Xiaoliang*
Author information +
History +

Abstract

In the study of nonlinear aerodynamic self-excited forces using the Spring-Suspension Segment Model (SSSM) experiment, it is often necessary to synchronously obtain the model's displacement, velocity, and acceleration responses. However, due to the different phase-frequency responses of various sensors and acquisition systems, it is challenging to meet the strict synchronization requirements between the response signals measured by multiple sensors. Based on this, this paper proposes a nonlinear response signal transformation method for the spring-suspended segment model based on Hilbert Transform (HT) and short-time Chebyshev fitting: first, the instantaneous amplitude and instantaneous phase of the displacement signal are obtained through HT transformation, then the Chebyshev polynomial is used for short-time sliding fitting of the instantaneous amplitude and phase, and finally, the fitting function is differentiated to obtain the model's vibration velocity and acceleration. The validation results of this method through numerical examples and segment model experimental data show that its noise resistance is better than the traditional differential method, and it can achieve high-fidelity transformation from displacement signal to velocity and acceleration signal under normal noise levels.

Key words

Hilbert transform / Chebyshev polynomial / Time domain differentiation method / Spring suspension segment model / Nonlinear response

Cite this article

Download Citations
ZHOU Jinyu, MENG Xiaoliang. High-fidelity time-domain conversion method for nonlinear responses of spring-suspended segment model based on HT#br#[J]. Journal of Vibration and Shock, 2025, 44(9): 119-126

References

[1] 葛耀君,赵林,许坤.大跨桥梁主梁涡激振动研究进展与思考[J].中国公路学报,2019,32(10):1-18.
GE Yao-jun, ZHAO Lin, XU Kun. Review and Reflection on Vortex-induced Vibration of Main Girders of Long-span Bridges[J]. China Journal of Highway and Transport,2019,32(10):1-18.
[2] 刘志文,李书琼,刘勇,等.大跨度斜拉桥下击暴流风致振动响应实测[J].湖南大学学报(自然科学版),2021,48(11):1-11. 
LIU Zhiwen, LI Shuqiong, LIU Yong, et al. Field Measurement of Wind-induced Vibration Response of Long-span Cable-stayed Bridge under Downburst [J]. Journal of Hunan University (Natural Science), 2021, 48(11): 1-11.
[3] 张伟,葛耀君,魏志刚,等.分离双箱高低雷诺数涡振的试验研究[J].空气动力学学报,2008(03):356-359
ZHANG Wei, GE YAOjun, WEI Zhigang, et al.Experiments on vortex induced vibration of twin-box bridge sections in high and low Reynolds numbers[J]. Acta  Aerodynamica Sinica, 2008(0 3): 356-359 
[4] 胡传新,赵林,陈海兴,等.流线闭口箱梁涡振气动力的雷诺数效应研究[J].振动与冲击,2019,38(12):118-125.DOI:10.13465/j.cnki.jvs.2019.12.017.
HU Chuanxin, ZHAO Lin, CHEN Haixing, et al. Reynolds number effects on  aerodynamic forces of a streamlined closed box girder during vortex-induced vibrations[J].Journal of Vibration and Shock,2019,38(12):118-125.DOI:10.13465/j.cnki.jvs.2019.12.017.
[5] 孟晓亮. 大跨度钢箱梁桥竖向涡激共振非线性特性和机理研究[D]. 同济大学,2013. 
MENG Xiaoliang. Nonlinear Behavior and Mechanism of Vertical Vortex-induced Vibration of LongSpan Steel-box-deck Bridges [D]. Tongji University, 2013.
[6]周涛,朱乐东,郭震山.经验非线性涡激力模型参数识别[J].振动与冲击,2011,30(03):115-118+144.DOI:10.13465/j.cnki.jvs.2011.03.047.
ZHOU Tao,ZHU Ledong,GUO Zhenshan.Parameters identification of nonlinear empirical model for vortex-induced vibration(VIV)[J].Journal of Vibration and Shock,2011,30(03):115-118+144.DOI:10.13465/j.cnki.jvs.2011.03.047.
[7] 马凯,胡传新,袁万城,等.基于风洞试验和数值模拟的双矩形断面涡振气动干扰研究[J].振动与冲击,2020,39(01):157-168.DOI:10.13465/j.cnki.jvs.2020.01.022.
MA Kai, HU Chuanxin, YUAN Wancheng, et al. Aerodynamic interferences in vortex-induced vibration of dual-rectangular sections based on wind tunnel tests and numerical simulation [J]Journal of Vibration and Shock,2020,39(01):157-168.DOI:10.13465/j.cnki.jvs.2020.01.022.
[8] Zhu L D , Meng X L , Guo Z S .Nonlinear mathematical modelof vortex-induced vertical force on a flat closed-box bridge deck[J].Journal of Wind Engineering & Industrial Aerodynamics, 2013, 122:69-82.
[9] Gao G, Zhu L, Ding S. Identification of nonlinear damping andstiffness of spring-suspended sectional model[C/OL].Proceedings of the Eighth Asia-Pacific Conference on Wind Engineering. Research Publishing Services, 2013: 263-272.
[10]高广中,朱乐东,吴昊,等.扁平箱梁断面弯扭耦合软颤振非线性特性研究[J].中国公路学报,2019,32(10):125-134.
GAO Guangzhong, ZHU Ledong, WU Hao, et al.Aerodynamic Nonlinearities of Coupled Soft Flutter of a Flat Closed-box Bridge Section[J].China Journal of Highway and Transport,2019,32(10):125-134.
[11]吴其林.刚性分隔器下并列长吊索整体尾流激振风洞试验研究[D].湖南大学,2017.
WU Qilin. Wind tunnel investigations into the wake induced oscillations of parallel cables coupled by rigid separators[D].Journal of Hunan University,2017.
[12 侯俊勇.闭口钢箱梁经验非线性涡激气动模型参数识别关键问题研究[D].合肥工业大学,2017.
HOU Junyong. Key Issues of Parameter Identification of Empirical Nonlinear model for Closed Steel Box Girders undergoing Vor tex-induced Vibration[D].Hefei University of Technology,2017.
[13]马腾飞.质量阻尼参数和紊流对H型吊杆驰振及涡振的影响[D].长安大学,2019.
MA Tengfei. Influence of Mass Damping Parameters and Turbulence  on Galloping and Vortex- induced Vibration of H-shape Hanger[D].Journal of Chang'an University,2019.
[14] Zhu L ,Meng X ,Du L , et al.A Simplified Nonlinear Model of Vertical Vortex-Induced Force on Box Decks for Predicting Stable Amplitudes of Vortex-Induced Vibrations[J].Engineering,2017,3(6):854-862.
[15] 朱乐东,庄万律,高广中.矩形断面非线性驰振自激力测量及间接验证中若干重要问题的讨论[J].实验流体力学, 2017, 31 (3):16
ZHU Ledong,ZHUANG Wanlu,GAO Guangzhong. Discussionon several important issues in measurement and indirectverification of nonlinear galloping self-excited forceson rectanqularcylinders [J].Journal of Experimental Fluid Mechanics, 2017, 31(3):16.
[16] 朱少民,夏虹,尹文哲,等.基于变分模态分解和希尔伯特变换的转子非平稳信号故障特征识别[J].哈尔滨工程大学学报,2024,45(05):825-832.
ZHU Shaomin, XIA Hong, YIN Wenzhe, et al. Fault feature identification for rotor nonstationary signals based on VMD-HT[J].Journal of Harbin Engineering University,2024,45(05):825-832.
[17] 黄大吉, 赵进平, 苏纪兰. 希尔伯特-黄变换的端点延拓[J]. 海洋学报(中文版), 2003(01): 1-11.
HUANG Daji, ZHAO Jinping, SU Jilan. Endpoint Extension  of Hilbert-Huang Transform(HHT)[J]. Acta Oceanologica Sin  ica(Chinese Edition), 2003(01): 1-11.
[18] Morison J R , O'Brien M P, Johnson J W, et al. The Force Exerted by Surface Waves on Piles[J]. Journal of Petroleum Technology, 1950, 2(5): 149-154.
PDF(3243 KB)

Accesses

Citation

Detail

Sections
Recommended

/