Control response analysis of deceleration braking system for pipeline plugging robot

TANG Yang1, PI Yunsen1, WANG Qiang2, WANG Guorong1

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (9) : 179-187.

PDF(3169 KB)
PDF(3169 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (9) : 179-187.
VIBRATION AND MECHANICS SCIENCE

Control response analysis of deceleration braking system for pipeline plugging robot

  • TANG Yang*1, PI Yunsen1, WANG Qiang2, WANG Guorong1
Author information +
History +

Abstract

To control the pipeline plugging robot to complete the deceleration braking quickly and accurately, and further improve the efficiency of pipeline maintenance and repair operations. A hydraulic control system for deceleration braking of a pipeline plugging robot is innovatively designed, and an experimental system device is built to verify its feasibility. A fluid model and a kinetic model of the robot inside the pipe are established, and a joint simulation model of constant deceleration nonlinear dynamics is proposed, which reveals the influence of the initial speed, braking distance, and other important parameters on the stability of the dynamic control of the robot in the process of decelerating and braking. The results show that the designed hydraulic control system has a good deceleration braking effect. As the robot's initial speed decreases, the system's steady-state error is smaller, the error of deceleration braking distance is between 0.3 and 0.5 m, and the positioning error and steady-state error are smaller. Under different deceleration braking distances, the maximum overshoot of acceleration is -3.54 m/s2, and increasing the deceleration braking distance can effectively reduce the positioning error. This study has important guiding significance for researching pipeline plugging robots.

Key words

Pipeline plugging robot / Deceleration braking / Hydraulic system / Joint simulation / Control stability

Cite this article

Download Citations
TANG Yang1, PI Yunsen1, WANG Qiang2, WANG Guorong1. Control response analysis of deceleration braking system for pipeline plugging robot[J]. Journal of Vibration and Shock, 2025, 44(9): 179-187

References

[1] 张行,崔灿,廖宁生,等. 考虑流固耦合的管道机器人冲击环焊缝过程动力学建模与分析[J]. 机械工程学报, 2020, 56(23): 129-140.
Zhang Xing, Cui Can, Liao Ningsheng, et al. Dynamic modeling and analysis of pipeline robot impact girth welding process considering fluid-structure coupling [J]. Journal of Mechanical Engineering, 2020, 56 (23): 129-140.
[2] 张海波,杨泳,何星.水下不停输带压开孔技术在海管连接中的应用[J]. 中国造船 2011, 52(02):234-238.
ZHANG Haibo, YANG Yong, HE Xing. Application of underwater non-stop pressure opening technology in marine pipe connection[J]. China Shipbuilding 2011, 52(02):234-238.
[3] 武燕,王才东,王新杰等.可变径管道机器人系统的设计与研究[J]. 矿山机械 2013, 41(4):124-127.
WU Yan, WANG Caidong, WANG Xinjie et al. Design and research of variable diameter pipeline robot system[J]. Mining Machinery 2013, 41(4):124-127.
[4] 吴超. 管道智能封堵器的设计研究[D].华东:中国石油大学, 2019.
Wu Chao. Design research of pipeline intelligent plugger [D].East China: China University of Petroleum, 2019.
[5] 孟繁帛.管内封堵器能量回收控制系统研究[D].北京:中国石油大学, 2020.
Meng Fanbo. Research on energy recovery control system of in-pipe plugger [D].Beijing: China University of Petroleum, 2020.
[6] 邢同超,赵宏林,张蓬等.基于单片机和DDS信号源在智能封堵器中的应用[J]. 石油机械 2008, 36(09): 126-128.
XING Tongchao, ZHAO Honglin, ZHANG Peng, et al. Application of Microcontroller and DDS Signal Source in Intelligent Plugger[J]. Petroleum Machinery 2008, 36(09): 126-128.
[7] 闫宏伟,刘翼,李健等.埋地管道泄漏自适应封堵机器人设计及研究[J]. 中国安全生产科学技术 2022, 18(01): 142-148.
YAN Hongwei, LIU Yi, LI Jian et al. Design and research of adaptive plugging robot for buried pipeline leakage[J]. China Safety Production Science and Technology 2022, 18(01): 142-148.
[8] 李振北,尤杰,程汉华等.管径508mm单节双封型内封堵器结构设计及封堵性能[J]. 油气储运 2019, 38(09): 1065-1071.
LI Zhenbei, YU Jie, CHENG Hanhua et al. Structural design and plugging performance of single-section double-seal type internal plugger with pipe diameter 508 mm[J]. Oil and Gas Storage and Transportation 2019, 38(09): 1065-1071.
[9] 彭熙伟,刘育江,陈涵煜等.基于变死区补偿的模糊滑模电液比例伺服控制系统研究[J].北京理工大学学报 2023,43(09):971-978.
PENG Xi-Wei, LIU Yu-Jiang, CHEN Han-Yu et al. Research on fuzzy sliding mode electro-hydraulic proportional servo control system based on variable dead zone compensation[J]. Journal of Beijing Institute of Technology 2023,43(09):971-978.
[10] Cetin S, Akkaya AV. Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system[J]. Nonlinear Dynamics, 2010, 61(3):465-476.
[11] Hao WR-(Hao,-Wenrui)-1,Kan JM-(Kan,-Jiangming)-1. Application of self-tuning fuzzy proportional–integral–derivative control in hydraulic crane control system[J]. Advances in Mechanical Engineering, 2016, Vol.8(No.6).
[12] 夏文凤. 油气管道机器人自适应运动控制的研究[D]. 武汉工程大学, 2022.
Xia WF. Research on adaptive motion control of oil and gas pipeline robot [D]. Wuhan Engineering University, 2022.
[13] 苗兴园, 赵弘. 管内智能封堵器气动减振系统主动控制[J]. 石油机械, 2021, 49(6):51-60.
Miao Xingyuan, Zhao Hong. Active control of pneumatic vibration damping system for in-pipe intelligent plugger[J]. Petroleum Machinery, 2021, 49(6):51-60.
[14] 王文飞. 流体驱动式管道机器人驱动特性研究[D].哈尔滨:哈尔滨工业大学机电工程学院,2011:20-40
Wanf Wenfei. Research on driving characteristics of a fluid-driven pipeline robot [D]. Harbin Institute of Technology, Harbin: Institute of Mechanical and Electrical Engineering. 2011. :20-40.
[15] 唐洋,刘祥,何胤,等.长输管道封堵机器人可调速运动规律研究[J].机械设计,2022,39(04):58-64.DOI:10.13841/j.cnki.jxsj.2022.04.007.
TANG Yang, LIU Xiang, HE Yin, et al. Research on adjustable speed motion law of intelligent blocking robot for long-distance pipeline[J]. Mechanical Design,2022,39(04):58-64.DOI:10.13841/j.cnki.jxsj.2022.04.007.
[16] 马建强. 管道内封堵机器人的运动特性与仿真分析研究[D].中北大学,2019.
Ma Jianqiang. Research the motion characteristics and simulation analysis of pipeline internal blocking robot [D]. North Central University,2019.
[17] 刘祥. 管道封堵机器人牵引调速与制动装置研究[D]. 西南石油大学, 2022.
Liu Xiang. Research on traction speed regulation and braking device of pipeline intelligent blocking robot [D]. Southwest Petroleum University, 2022.
[18] Lesani, M., Rafeeyan, M., & Sohankar, A. (2012). Dynamic Analysis of Small Pig through Two and Three-Dimensional Liquid Pipeline. Journal of Applied Fluid Mechanics, 5(2), 75-83. 
[19] Jiang, Z. G., Xie, C., Zhou, M. H., Liu, X., Li, G. Y., Wang, G. R., & Tang, Y. (2024). Stability analysis of braking and control system of pipeline intelligent plugging robot. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, 12. doi:10.1177/09544089241230286.
[20] Tang, Y., Pi, Y. S., Wang, Y., & Wang, G. R. (2024). Response analysis and experimental research on control characteristics of pipeline intelligent plugging robot autonomous plugging hydraulic system. Applied Ocean Research, 144, 14. doi:10.1016/j.apor.2024.1039
[21] Feng, L., Zhu, H. F., Song, Y., Cao, W. C., Li, Z. Y., & Jia, W. L. (2022). Modeling of Gas Migration in Large Elevation Difference Oil Transmission Pipelines during the Commissioning Process. Energies, 15(4), 19. doi:10.3390/en15041379
[22] Tang, Y., Wu, J., Liu, X., Yang, X., Wang, Y., & Xiong, H. Y. (2022). Dynamic control stability analysis of pipeline intelligent plugging robot in its deceleration and precise positioning. Journal of Mechanical Science and Technology, 36(9), 4707-4717. doi:10.1007/s12206-022-0831-1.
[23] 曾杰. 柔性液压伸缩式牵引器设计及其工作机理研究[D]. 西南石油大学, 2019.
Zeng Jie. Research on the design of flexible hydraulic retractable tractor and its working mechanism [D]. Southwest Petroleum University, 2019.
PDF(3169 KB)

Accesses

Citation

Detail

Sections
Recommended

/