Adaptive sliding mode control of active suspension for hub motor-driven vehicle

KOU Farong1, 2, WANG Jiahuan2, LI Qiangqiang2, HAN Chuhuan2, SONG Yangyang2

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (9) : 188-194.

PDF(2195 KB)
PDF(2195 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (9) : 188-194.
VIBRATION AND MECHANICS SCIENCE

Adaptive sliding mode control of active suspension for hub motor-driven vehicle

  • KOU Farong*1,2, WANG Jiahuan2, LI Qiangqiang2, HAN Chuhuan2, SONG Yangyang2
Author information +
History +

Abstract

In-wheel motors cause negative vibration effects caused by the coupling of motor excitation and vehicle suspension system. To solve this problem, an adaptive sliding mode control strategy for active suspension based on dual sliding surfaces is proposed. The dynamic model of active suspension and the model of permanent magnet synchronous motor are built. The influence of stator rotor eccentricity and vehicle speed on unbalanced electromagnetic force is analyzed. An adaptive sliding mode controller based on the ideal sky and earth shed is developed. The results show that compared with passive suspension and traditional skyhook control, the adaptive sliding mode control suspension system improves the vehicle's ride comfort and motor operation stability. The eccentricity of hub motors has been reduced by 12.4%. Unbalanced electromagnetic forces are reduced. The vertical vibration coupling effect of the motor and the vehicle is effectively suppressed. Body acceleration and suspension dynamic deflection were reduced by 16.1% and 4.2%. The dynamic load of the tire is kept within a reasonable range. 

Key words

hub motor / unbalanced electromagnetic force / active suspension / sliding mode control

Cite this article

Download Citations
KOU Farong1, 2, WANG Jiahuan2, LI Qiangqiang2, HAN Chuhuan2, SONG Yangyang2. Adaptive sliding mode control of active suspension for hub motor-driven vehicle[J]. Journal of Vibration and Shock, 2025, 44(9): 188-194

References

[1] Cao X, Yang W, Yao Y. Electric car design based on wheel motor drive[J]. IOP Conference Series Materials Science and Engineering, 2019, 573, 012074. 
[2] 崔晓迪,提艳,瞿元. 非簧载质量和轮毂电机偏心对轮毂电机驱动电动汽车平顺性的影响[J]. 重庆理工大学学报(自然科学),2021, 35(1) : 50 -57, 103.
Cui Xiaodi, Ti Yan, Qu Yuan. Effect of unsprung mass and in-wheel motor eccentricity on rider motor driven electric vehicle ride comfort[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(1) : 50 - 57, 103.
[3] 李韶华,罗海涵,冯桂珍,等. 电动汽车机-电-路耦合系统建模及动力学分析[J]. 机械工程学报,2021, 57(12):51-61.
Li Shaohua, Luo Haihan, Feng Guizhen, et al. Modeling and Dynamic Analysis of Mechanic-electro-road Coupling System of Electric Vehicles[J]. Journal of Mechanical Engineering, 2021, 57(12):51-61.
[4] 张海军,万少华,张明杰,等.随机激励下电动汽车轮毂电机耦合振动特性分析[J].机械设计,2024,41(01):146-152.
Zhang Haijun, WAN Shaohua, ZHANG Mingjie, et al. Analysis on coupled vibration characteristics of electric vehicle’s in-wheel motor with random excitation[J]. Journal of Machine Design, 2024,41(01):146-152.
[5] 汪若尘,俞峰,邵凯,等. 集成电磁悬架的轮毂驱动电动车垂向振动抑制方法研究[J]. 农业机械学报,2018, 49(7): 382-389.
Wang Ruochen, Yu Feng, Shao Kai, et al. Design and performance analysis of electromagnetic suspension based on in-wheel motor car[J].Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 382-389.
[6] 金贤建,王佳栋,徐利伟,等. 轮毂电机驱动电动汽车主动悬架μ综合鲁棒控制研究[J/OL]. 机械工程学报,2024,1-11.
Jin Xianjian, Wang Jiadong, Xu Liwei, et al. μ-Synthesis robust control for active suspension of in-wheel-motor-driven electric vehicles[J/OL]. Journal of Mechanical Engineering, 2024, 1 -11.
[7] Luo Yutao, TAN Di. Study on the dynamics of the  in-wheel motor system[J]. IEEE Transactions on Vehicular Technology,2012,61(8):3510-3518
[8] 李仲兴,李忠远,刘晨来. 基于显式模型预测控制的轮毂驱动电动车垂向振动研究[J]. 振动与冲击,2022, 41(11): 259-265.
Li Zhongxing, Li Zhongyuan, Liu Chenlai.Vertical vibration of hub motor driven electric vehicle based on EMPC[J]. Vibration and Impact, 2022, 41(11): 259-265.
[9] Jiang H , Wang C , Li Z ,et al. Hybrid Model Predictive Control of Semiactive Suspension in Electric Vehicle with Hub-Motor [J]. Applied Sciences, 2021, 11(1):382.
[10] 胡一明,李以农,李哲,等. 基于工况识别的IWM-EV主动悬架MOPSO模糊滑模控制[J]. 振动与冲击,2021, 40(6):147-157.
Hu Yiming, Li Yinong, Li Zhe, et al. MOPSO fuzzy sliding mode control of an IWM-EV active suspension based on operating condition recognition [J]. Vibration and Impact, 2021, 40(6):147-157. 
[11] 杨定伟,邓兆祥,张河山,等.永磁轮毂电机磁场解析建模[J].电工技术学报,2019,34(07):1423-1433.
Yang Dingwei, Deng Zhaoxiang, ZHANG Heshan, et al. Exact analytical solution of magnetic field in permanent magnet in-wheel motor[J].Transactions of China Electrotechnical Society, 2019, 34(07): 1423-1433.
[12] 张河山,邓兆祥,杨明磊,等.电动车用轮毂电机的负载磁场解析计算[J].汽车工程,2020,42(12):1655-1664.
ZHANG Heshan, DANG Zhaoxiang, YANG Minglei, et al. Analytical calculation of loaded magnetic field in hub motor for electric vehicle[J]. Automotive Engineering, 2020, 42(12): 1655-1664.
[13] 左曙光,张耀丹,刘晓璇,等. 转子偏心对永磁同步电机振动噪声的影响分析[J]. 机电一体化,2017, 23(6):38-45,51.
Zuo Shuguang, Zhang Yaodan, Liu Xiaoxuan, et al. Analysis on the vibration and noise of permanent magnet synchronous motor with rotor eccentricity[J]. Mechatronics, 2017, 23(6):38-45,51.
[14] ANMOL AGGARWAL, ELIAS G. STRANGAS, JOHN AGAPIOU. Analysis of Unbalanced Magnetic Pull in PMSM Due to Static Eccentricity[C]. IEEE Energy Conversion Congress and Exposition.Baltimore, MD:IEEE,2019. 
[15] 秦武,康英姿,上官文斌,等.基于天棚模型和扰动观测器的主动悬架滑模控制研究[J].华南理工大学学报(自然科学版),2020,48(06):16-24+33.
Qin Wu, Kang Yingzi, Shangguan Wenbin, et al. Study on sliding mode control with disturbance observer integrating skyhook model for active suspension systems[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48 (06):16-24+33. 
[16] 庞辉,梁军,王建平,等. 考虑系统不确定性的车辆主动悬架自适应模糊滑模控制[J]. 振动与冲击, 2018, 37(15): 261-269.
Pang Hui, Liang Jun, Wang Jianping, et al. Adaptive fuzzy sliding mode control for vehicle active suspension systems considering system uncertainty [J]. Vibration and Impact, 2018, 37(15): 261-269.
PDF(2195 KB)

219

Accesses

0

Citation

Detail

Sections
Recommended

/