Pneumatic impact behavior of high-speed laser cladding composite target plate

CHAI Rongxia1, 2, LONG Xue1, XIAO Li1, SU Chengming3, JIANG Xiaoyuan1

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (9) : 231-240.

PDF(4070 KB)
PDF(4070 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (9) : 231-240.
SHOCK AND EXPLOSION

Pneumatic impact behavior of high-speed laser cladding composite target plate

  • CHAI Rongxia*1,2, LONG Xue1, XIAO Li1, SU Chengming3, JIANG Xiaoyuan1
Author information +
History +

Abstract

关键词:煤矿机械;冲击行为;仿真分析;吸能特性;损伤失效

Key words

coal mining machinery / impact behavior / simulation analysis / energy absorption characteristics / damage failure

Cite this article

Download Citations
CHAI Rongxia1, 2, LONG Xue1, XIAO Li1, SU Chengming3, JIANG Xiaoyuan1. Pneumatic impact behavior of high-speed laser cladding composite target plate[J]. Journal of Vibration and Shock, 2025, 44(9): 231-240

References

[1] 曹现刚,段雍,王国法,等.煤矿设备全寿命周期健康管理与智能维护研究综述[J/OL].(2024-08-06)[2024-08-13].https://doi.org/10.13225/j.cnki.jccs.2024.0400.
[2] 周坪,马国庆,周公博,等.智能化带式输送机健康监测技术研究综述[J].仪器仪表学报,2023,44(12):1-21.
Zhou Ping, Ma Guoqing, Zhou Gongbo, et al. Review of Health Monitoring Technology for Intelligent Belt Conveyor [J]. Chinese Journal of Scientific Instrument, 2023, 44(12): 1-21.
[3] 刘欣科,赵忠辉,赵锐.冲击载荷作用下液压支架立柱动态特性研究[J].煤炭科学技术,2012,40(12):66-70.
Liu, Xinke, Zhao Zhonghui, Zhao Rui. Study on the Dynamic Characteristics of Hydraulic Support Columns under Impact Load [J]. Coal Science and Technology, 2012, 40(12): 66-70.
[4] Yankai Q I N, Xiaohong Z, Jianchao Z, et al. Reliability analysis of mining machinery pick subject to competing failure processes under random load shock[J]. Journal of China Coal Society, 2022, 47(8): 3175-3188.
[5] 柴蓉霞,姜潇远,王秦生,等.基于能量分配原理的煤矿机械冲击行为研究及装置设计[J/OL].中国机械工程,1-14[2024-08-13].
Chai Rongxia, Jiang Xiaoyuan, Wang Qinsheng, et al.Research and device design of coal mine mechanical impact behaviors based on energy distribution principle[J/OL]. China Mechanical Engineering, 1-14 [2024-08-13].
[6] 傅戈雁,石世宏,张赟,等.多冲碰撞载荷下激光涂层的裂纹损伤及机理分析[J].中国机械工程,2006,(21):2296-2299+2304.
Fu Geyan, Shi Shihong., Zhang Yun, et al. Crack Damage and Mechanism Analysis of Laser Coating under Multiple Impact Loads [J]. China Mechanical Engineering, 2006, (21): 2296-2299+2304.
[7] 李云峰,石岩.WC对激光熔覆层组织及耐磨耐冲击性的影响[J].中国表面工程,2021,34(02):104-113.
Li Yunfeng, Shi Yan. Effect of WC on the Microstructure, Wear Resistance, and Impact Resistance of Laser Cladding Coatings [J]. China Surface Engineering, 2021, 34(02): 104-113.
[8] Zhou J, Liu B, Wang S. Finite element analysis on impact response and damage mechanism of composite laminates under single and repeated low-velocity impact[J]. Aerospace Science and Technology, 2022, 129: 107810.
[9] 袁圣林.装甲车用铝合金叠层复合板力学行为与抗弹性能优化研究[D].湖南科技大学,2022.
Yuan Shenglin. Study on the Mechanical Behavior and Ballistic Performance Optimization of Aluminum Alloy Laminated Composite Plates for Armored Vehicles [D]. Hunan University of Science and Technology, 2022.
[10] 肖新科.双层金属靶的抗侵彻性能和Taylor杆的变形与断裂[D].哈尔滨工业大学,2010.
Xiao, X.K. Anti-Penetration Performance of Double-Layer Metal Targets and Deformation and Fracture of Taylor Rods [D]. Harbin Institute of Technology, 2010.
[11] Senthil K, Iqbal M A, Arindam B, et al. Ballistic resistance of 2024 aluminium plates against hemispherical, sphere and blunt nose projectiles[J]. Thin-Walled Structures, 2018, 126: 94-105.
[12] Xu Q L, Zhang Y, Liu S H, et al. High-temperature oxidation behavior of CuAlNiCrFe high-entropy alloy bond coats deposited using high-speed laser cladding process[J]. Surface and Coatings Technology, 2020, 398: 126093.
[13] Schopphoven T, Gasser A, Wissenbach K, et al. Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying[J]. Journal of Laser Applications, 2016, 28(2).
[14] 郭永明,叶福兴,祁航.超高速激光熔覆技术研究现状及发展趋势[J].中国表面工程,2022,35(06):39-50.
Guo Yongming, Ye Fuye, Qi Hang. Research Status and Development Trends of Ultra-High-Speed Laser Cladding Technology [J]. China Surface Engineering, 2022, 35(06): 39-50.
[15] 周喻,邹世卓,高永涛,等.动载下层状岩体力学特性试验与数值模拟[J].哈尔滨工业大学学报,2023,55(06):93-109.
Zhou Yu, Zou Shizhuo, Gao Yongtao, et al. Experimental and Numerical Simulation of Mechanical Characteristics of Layered Rock Mass under Dynamic Load [J]. Journal of Harbin Institute of Technology, 2023, 55(06): 93-109.
[16] 和递,孔祥国,李树刚,等.低速冲击载荷扰动煤体破裂动力学特征与能量耗散规律研究[J/OL].(2024-02-07)[2024-11-15].https://link.cnki.net/urlid/11.2402.TD.20240227.1430.002.
[17] 柴蓉霞,田妍,周新建,等.回字形扫描路径下高速激光熔覆数值模拟及实验研究[J].中国激光,2023,50(08):120-130.
Chai Rongxia., Tian Yan, Zhou Xinjian, et al. Numerical Simulation and Experimental Study of High-Speed Laser Cladding under Rectangular Scanning Path [J]. Chinese Journal of Lasers, 2023, 50(08): 120-130.
[18] 国家标准化管理委员会,金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1-2021[S].北京:国家市场监督管理总局,2021.
Standardization Administration of China. Metallic materials - Tensile testing - Part 1: Method of test at room temperature: GB/T 228.1-2021 [S]. Beijing: State Administration for Market Regulation, 2021.
[19] Mu L, Jia Z, Ma Z, et al. A theoretical prediction framework for the construction of a fracture forming limit curve accounting for fracture pattern transition[J]. International Journal of Plasticity, 2020, 129: 102706.
[20] Roth C C, Mohr D. Determining the strain to fracture for simple shear for a wide range of sheet metals[J]. International Journal of Mechanical Sciences, 2018, 149: 224-240.
[21] Yan Y, Wang H, Li Q, et al. Finite element simulation of flexible roll forming with supplemented material data and the experimental verification[J]. Chinese Journal of Mechanical Engineering, 2016, 29(2): 342-350.
[22] Bai Y, Teng X, Wierzbicki T. On the application of stress triaxiality formula for plane strain fracture testing [J]. Journal of Engineering Materials & Technology, 2009, 131(2): 175-208
[23] Bridgman P.W. Studies in large plastic flow and fracture: with special emphasis on the effects of hydrostatic pressure[M]. McGraw-Hill, 1952
[24] Zengli P, Haisheng Z, Xin L, et al. Ductile fracture of X80 pipeline steel over a wide range of stress triaxialities and Lode angles[J]. Engineering Fracture Mechanics,2023,289.
[25] Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004,46(1): 81-98.
[26] Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity, 2008,24(6): 1071-1096.
[27] Jia ,Zhe ,Mu , et al. Experimental and Numerical Study on Ductile Fracture Prediction of Aluminum Alloy 6016-T6 Sheets Using a Phenomenological Model[J]. Journal of Materials Engineering and Performance,2021(prepublish).
[28] Gruben G., Fagerholt E., Hopperstad 0.S., et al. Fracture characteristics of a cold-rolled dual-phase steel[J]. European Journal of Mechanics-A/Solids,2011,30(3): 204-218
[29] 于正洋,钟斌,张传伟,等.304不锈钢棒料连续旋弯低应力精密下料断裂预测[J].机械工程学报,2024,60(01):190-197.
Yu Zhengyang, Zhong Bin, Zhang Chuanwei, et al. Fracture Prediction of Low-Stress Precision Cutting of 304 Stainless Steel Bars in Continuous Rotary Bending [J]. Journal of Mechanical Engineering, 2024, 60(01): 190-197.
[30] Oh C S, Kim N H, Kim Y J, et al. A finite element ductile failure simulation method using stress-modified fracture strain model[J]. Engineering fracture mechanics, 2011, 78(1): 124-137.
[31] Hooputra H, Gese H, Dell H, et al. A comprehensive failure model for crashworthiness simulation of aluminium extrusions[J]. International Journal of Crashworthiness, 2004, 9(5): 449-464.
[32] Costa M Y P, Venditti M L R, Voorwald H J C, et al. Effect of WC–10% Co–4% Cr coating on the Ti–6Al–4V alloy fatigue strength[J]. Materials Science and Engineering: A, 2009, 507(1-2): 29-36.
[33] 黎业华,聂光临,盛鹏飞,等.Al2O3陶瓷增材制造工艺研究进展[J].材料导报,2022,36(14):133-144.
Li Yehua., Nie Guanglin, Sheng Peifei, et al. Research Progress on Additive Manufacturing of Al2O3 Ceramics [J]. Materials Review, 2022, 36(14): 133-144.
[34] 田峰,段海涛,潘邻,等.CrN/TiAlN多层涂层的微观结构和摩擦磨损性能[J].中国表面工程,2024,37(03):232-241.
Tian Feng, Duan Haitao, Pan Lin, et al. Microstructure and Tribological Properties of CrN/TiAlN Multilayer Coatings [J]. China Surface Engineering, 2024, 37(03): 232-241.
[35] 蔡宣明,潘成龙,郭安肖,等.高速冲击加载下碳纤维复合材料层合结构抗侵彻特性及响应机理[J].振动与冲击,2024,43(12):88-96+165.
Cai Xuanming, Pan Chenglong, Guo Anxiao, et al. Anti-Penetration Characteristics and Response Mechanism of Carbon Fiber Composite Laminates under High-Speed Impact Loading [J]. Journal of Vibration and Shock, 2024, 43(12): 88-96+165.
PDF(4070 KB)

132

Accesses

0

Citation

Detail

Sections
Recommended

/