Shaking table tests for TLD vibration reduction control of offshore wind powerstructures under excitations with different spectral characteristics

TIAN Huiyuan1, LE Zhiji1, ZHANG Zhiqiang2, CHEN Li1, CAI Xiaoying1, LU Yijing2

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (9) : 66-76.

PDF(5903 KB)
PDF(5903 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (9) : 66-76.
VIBRATION THEORY AND INTERDISCIPLINARY RESEARCH

Shaking table tests for TLD vibration reduction control of offshore wind powerstructures under excitations with different spectral characteristics

  • TIAN Huiyuan1, LE Zhiji1, ZHANG Zhiqiang2, CHEN Li1, CAI Xiaoying1, LU Yijing*2
Author information +
History +

Abstract

The support structure of offshore wind turbine is easy to be damaged under the environmental load. Taking the support structure of a 6.45MW offshore wind turbine as the prototype, a 1/15 scale model of the shaking table was designed, and then test the dynamic characteristics. Low order sinusoidal and low frequency Darfield waves are input at the bottom of the model, study the dynamic response of the tower structure under low frequency vibration load. A Tuned liquid damper (TLD) tank is set on the top of the model tower to test the characteristics of the damper. At the same time, the equivalent finite element model is established for numerical simulation of the same working condition. The results show that the vibration response of the tower shows a nonlinear amplification trend from the bottom to the top under low-order vibration excitation, and the distribution of the extreme value of the tower vibration response is similar to the first-order natural vibration mode of the structure. The vibration attenuation effect of the TLD is obvious under sinusoidal excitation, and the vibration amplitude decreases significantly. Under low terrace seismic wave, the response amplitude does not decrease obviously, but TLD increases the additional damping of structure. The equivalent finite element model is in good agreement with the experimental results, and the vibration characteristics of TLD can be effectively simulated by mass block and connector element.

Key words

offshore wind turbine / shaking table test / TLD / spectral characteristic / dynamic response

Cite this article

Download Citations
TIAN Huiyuan1, LE Zhiji1, ZHANG Zhiqiang2, CHEN Li1, CAI Xiaoying1, LU Yijing2. Shaking table tests for TLD vibration reduction control of offshore wind powerstructures under excitations with different spectral characteristics[J]. Journal of Vibration and Shock, 2025, 44(9): 66-76

References

[1] 李耀华,孔力. 发展太阳能和风能发电技术加速推进我国能源转型[J].中国科学院院刊,2019,34(4): 426-433. 
LI Yao-hua, KONG Li. Develop Solar and Wind Power Generation Technology to Accelerate China’s Energy Transformation[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 426-433 
[2] Chen M, Wang L Y, Luo Z H, et al. Super-resolution reconstruction framework of wind turbine wake: Design and  application[J] Ocean Engineering, 2023, 288: 116099.
[3] 杨涵,刘仰昭,戴靠山,等. 高耸烟囱风致振动的TPIMS减振数值分析 [J]. 振动与冲击, 2022, 41 (09): 290-298.
YANG Han, LIU Yang-zhao, DAI Kao-shan, et al. Numerical analysis of TPIMS for reducing wind-induced vibration of high-rise chimney[J]. Journal of Vibration and Shock, 2022, 41 (09): 290-298.
[4] Wei K, Myers A T, Arwade S R. Dynamic effects in the response of offshore wind turbines supported by jackets under wave loading[J]. Engineering Structures, 2017, 142: 36-45.
[5] Ding H, Chen Y N, Wang J T, et al. Numerical analysis of passive toroidal tuned liquid column dampers for the vibration control of monopile wind turbines using FVM and FEM[J]. Ocean Engineering, 2022, 247: 110637. 
[6] 徐亚洲,于明阳,任倩倩,等. 随机近场地震作用下风力发电塔结构振动台试验研究 [J]. 振动与冲击, 2021, 40 (19): 309-316.
XU Ya-zhou, YU Ming-yang, RENG Qian-qian, et.al Shaking table test for wind power tower structure under random near field earthquake[J]. Journal of Vibration and Shock, 2021, 40 (19): 309-316..
[7] Ren Q, Xu Y, Zhang H, et al. Shaking table test on seismic responses of a wind turbine tower subjected to pulse-type near-field ground motions[J]. Soil Dynamics and  Earthquake Engineering, 2021,142: 106557. 
[8] 鲁正,荣坤杰,马晨智. 附加PTMD风力发电机结构减振控制试验研究 [J]. 建筑结构学报, 2023, 44 (04): 267-275. 
LU Zheng, RONG Kun-jie, MA Chen-zhi. Experimental study on vibration reduction control of particle tuned mass damper coupled with wind turbine structure[J]. Journal of Building Structures. 44 (4), 267.
[9] Love J S, Tait M J. A preliminary design method for tuned liquid dampers conforming to space restrictions[J]. Engineering Structures, 2012, 40: 187-97.
[10] 罗一帆,孙洪鑫,王修勇,等. 风浪联合作用下分布式调谐质量阻尼器对海上半潜漂浮式风机的减振控制 [J]. 振动工程学报, 2024, 37 (04): 565-577.
LUO Yi-fan, SUN Hong-xin, WANG Xiu-yong, et al. Vibration reduction control of a semisubmersible floating offshore wind turbine by the distributed tuned mass dampers under combined wnd and wave excitations[J]. Journal of Vibration Engineering, 2024, 37 (04): 565-577.
[11] 刘纲,王晖,冀卫东,等. 风机塔架调谐液体阻尼器多向致振控制方法研究[J]. (2023-08-22)[2024-07-01].https://link.cnki.net/urlid/11.2595.O3.20230821.1811.004.
LIU Gang, WANG Hui, JI Wei-dong,et al. Research on Multi-direction Vibration Control Method of Tuned Liquid Damper for Winf Turbine Towers[J]. Engineering Mechanics, 1-10[2024-07-01].
[12] Yeh P H, Chung S H, Chen B F. Multiple TLDs on Motion Reduction Control of the Offshore Wind Turbines[J]. Journal of Marine Science and Engineering, 2020, 8(6): 470.
[13] 周惠蒙,吴斌,谭晓晶,等. 调谐液体阻尼器的振动台子结构试验研究 [J]. 土木工程学报, 2014, 47 (S1): 70-75. 
ZHOU Hui-meng, WU bin, TAN Xiao-jing, et al. Shaking table substructure test of tuned liquid damper[J]. China Civil Engineering Journal, 2014, 47 (S1): 70-75.
[14] Prowell I, Veers P S. Assessment of wind turbine seismic risk: existing literature and simple study of tower moment demand. Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA,USA, 2009.
[15] IEC 61400-1. Wind turbines, Part 1: design requirements. Geneva, Switzerland: International Electrotechnical Commission , 2005.
[16] IEC 61400-3. Wind turbines, Part 3: design requirements for offshore wind turbines. Geneva, Switzerland: International Electrotechnical Commission , 2009.
[17] 周颖, 吕西林. 建筑结构振动台模型试验方法与技术[M].科学出版社, 2012.
[18] Lu Y, Xie W, Liang H, et al. Experimental and numerical study on dynamic response of offshore wind turbine subjected to earthquake loads[J]. Ocean Engineering, 2024, 301: 117353.
[19] 孟家瑶,戴靠山,毛振西,等. 某1.5MW风电塔振动台缩尺模型设计 [J]. 世界地震工程, 2018, 34 (04): 191-198.
MENG Jia-yao, DAI Kao-shan, MAO Zhen-xi, et al. Shaking table test model design of a 1.5MW wind turbine tower[J]. World Earthquake Engineering, 2018, 34 (04): 191-198.
[20] Olmos B A, Roesset J M. Evaluation of the half-power bandwidth method to estimate damping in systems without real modes[J]. Earthquake Engineering Structural Dynamics. 2010, 39 (14), 1671-1686. 
[21] 徐向阳,陈振宁,黄正,等. 大型混凝土梁全场变形测量中数字散斑场的制作和应用 [J]. 东南大学学报(自然科学版), 2018, 48 (05): 896-902.
XU Xiang-yang, CHEN Zhen-ning, HUANG Zheng, et al. Fabrication and application of digital speckle pattern in full-field measurement of deformed large concrete beams[J]. Journal of Southeast University(Nature Science Edition), 2018, 48 (05): 896-902.
[22] Housner GW. Dynamic pressures on accelerated fluid containers[J]. Bulletin of the seismological society of America, 1957, 47:15-35
PDF(5903 KB)

Accesses

Citation

Detail

Sections
Recommended

/