Adjusting ground motion record time histories for fitting standard response spectrum based on digital filtering technology

YANG Lanlan1,2,3, FU Ziyue1, WANG Dengfeng1, XIE Weichau4

Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (9) : 57-67.

PDF(3397 KB)
PDF(3397 KB)
Journal of Vibration and Shock ›› 2023, Vol. 42 ›› Issue (9) : 57-67.

Adjusting ground motion record time histories for fitting standard response spectrum based on digital filtering technology

  • YANG Lanlan1,2,3, FU Ziyue1, WANG Dengfeng1, XIE Weichau4
Author information +
History +

Abstract

In the seismic design and analysis of crucial structures, it is necessary input the seismic ground motion time history, and the response spectrum of which is compatible with the design spectrum. A new method of matching the design spectrum based on digital filtering technology is proposed. The number and range of frequency bands are determined by the frequency controlling points of the design spectrum. For each frequency band, the infinite impulse response digital filter is used to carry out band-pass filtering on the recorded strong motion time history, and the time history is expanded and reconstructed with the filtered sub function as the basis function. Taking the reconstructed time history as the seed motion, the influence matrix method is introduced to carry out iterative procedures for adjusting the amplitude vector of the filter sub-functions gradually until the fitting accuracy between the response spectrum of iterative time history and the target spectrum meets the requirements. The matching procedure is carried out taking three different design spectra as the targets. The results show that the ground motion time history decomposed and reconstructed by the filtered sub-functions are almost covered by the recorded strong motion in both time domain and frequency domain. The presented method is capable of achieving tightly matching with different design spectra using the same seed motion, and retains the non-stationarity of recorded ground motion well, which can provide appropriate seismic input for seismic design and analysis of engineering structures.

Key words

seismic design and analysis / ground motion simulation / digital filtering / influence matrix method

Cite this article

Download Citations
YANG Lanlan1,2,3, FU Ziyue1, WANG Dengfeng1, XIE Weichau4. Adjusting ground motion record time histories for fitting standard response spectrum based on digital filtering technology[J]. Journal of Vibration and Shock, 2023, 42(9): 57-67

References

[1] 陈天红, 张伯艳, 谢清荣, 等. 人工合成地震波研究 [J]. 四川建筑科学研究, 2010, 36: 201-203.
Chen Tianhong, Zhang Boyan, Xie Qingrong, et al. Researh on synthetic seismic waves [J]. Sichuan Building Science, 2010, 36(02); 201_203.
[2] Rizzo P C, Shaw D E, Jarecki S J. Development of real/synthetic time histories to match smooth design spectra [J]. Nuclear Engineering and Design, 1975, 32(1): 148-155.
[3] Scanlan R H, Sachs K. Earthquake Time Histories and Response Spectra [J]. Journal of the Engineering Mechanics Division, 1974, 100(4): 635-655.
[4] 刘帅, 潘超, 周志光. 对人造地震动反应谱求解及拟合的几个相关问题探讨 [J]. 地震学报, 2018, 40(04): 519-530.
Liu Shuai, Pan Chao, Zhou Zhiguang. Discussions on the response spectral solution and fitting of spectrum-compatible artificial seismic waves [J]. Acta Seismologica Sinica, 2018, 40(04): 519-530.
[5] 王雪妮, 周晶. 基于粒子群优化算法的人工地震波反应谱拟合技术 [J]. 水电能源科学, 2013, 31(12): 98-101+142.
Wang Xueni, Zhou Jing. Artificial seismic wave response spectrum fitting technology based on particle swarm optimization algorithm [J]. Water Resources and Power, 2013, 31(12): 98-101+142.
[6] Ohsaki Y. On the significance of phase content in earthquake ground motions [J]. Earthquake Engineering & Structural Dynamics, 1979, 7(5): 427-439.
[7] 金星, 廖振鹏. 地震动相位特性的研究 [J]. 地震工程与工程振动, 1993, (01): 7-13.
Jin Xing, Liao Zhenpeng. Research on phase characteristics of ground motion [J]. Earthquake Engineering and Engineering, 1993(01): 7-13.
[8] 胡聿贤, 何训. 考虑相位谱的人造地震动反应谱拟合 [J]. 地震工程与工程振动, 1986, (02): 37-51.
Hu Yuxian, He Xun. Response spectrum fitting of artificial ground motion considering phase spectrum [J]. Earthquake Engineering and Engineering, 1986(02): 37-51.
[9] 谢皓宇, 郑万山, 仉文岗, 等. 考虑迭代相关及相位谱的人工地震波反应谱拟合 [J]. 地震学报, 2020, 42: 341-348+378.
Xie Haoyu, Zheng Wanshan, Zhang Wengang. Response spectra-compatible artificial ground motion simulation considering iterative correlation and phase spectra [J]. Acta Seismologica Sinica, 2020, 42: 341-348+378.
[10] Zhao F-X, Hu Y-X. The relation between the response spectrum and the phase difference spectrum [J]. Acta Seismologica Sinica, 1996.
[11] 赵凤新, 张郁山. 多阻尼反应谱拟合的时域叠加法 [J]. 核动力工程, 2008, (03): 35-40.
Zhao Fengxin, Zhang Yushan. Time domain superposition method for multi-damped response spectrum compating [J]. Nuclear Power Engineering, 2008(03): 35-40.
[12] Kanai K. Semi-empirical formula for the seismic characteristics of the ground, Bulletin of Earthquake Research Institute [J]. 1957.
[13] Vanmarcke E H. Properties of Spectral Moments with Applications to Random Vibration [J]. Journal of the Engineering Mechanics Division, 1972, 98: 425-446.
[14] Kaul M K. Stochastic characterization of earthquakes through their response spectrum [J]. Earthquake Engineering & Structural Dynamics, 1978, 6(5): 497-509.
[15] Cacciola P, Colajanni P, Muscolino G. Combination of Modal Responses Consistent with Seismic Input Representation [J]. Journal of Structural Engineering, 2004, 130(1): 47-55.
[16] 江近仁, 洪峰. 功率谱与反应谱的转换和人造地震波 [J]. 地震工程与工程振动, 1984, (03): 1-11.
Jiang Jinren, Hong Feng. Conversion of power spectrum to response spectrum and man-made seismic waves [J]. Earthquake Engineering and Engineering, 1984(03): 1-11.
[17] 翟希梅, 吴知丰. 人工地震波反应谱拟合技术的改进 [J]. 哈尔滨工业大学学报, 1995, (06): 130-133.
Zhai Ximei, Wu Zhifeng. The improvement of artificial seismic response spectrum compating [J]. Journal of Harbin Institute of Technology, 1995(06): 130-133.
[18] 刘威, 但庆文, 刘章军. 基于建筑抗震规范的随机地震动时程生成 [J]. 三峡大学学报(自然科学版), 2016, 38(06): 50-53.
Liu Wei, Dan Qingwen, Liu Zhangjun. Generation of Random Ground Motion Time History Based on Seismic Code for Buildings [J]. Journal of China Three Gorges University(Natural Sciences), 2016, 38(06): 50-53.
[19] 赵凤新, 张郁山. 人造地震动反应谱拟合的窄带时程叠加法 [J]. 工程力学, 2007, (04): 87-91+45.
Zhao Fengxin, Zhang Yushan. Narrowband-Time-History's Superimposing Method of Generating Response-Spectrum- Compatible Accelerogram [J]. Engineering Mechanics, 2007(04): 87-91+45.
[20] 何佳, 王海涛. 用于窄带叠加人工时程模拟的一种窄带构造算法 [J]. 核动力工程, 2012, 33(03): 69-73.
He Jia, Wang Haitao. A Narrowband Construction Algorithm for Artificial Time History Simulation [J]. Neclear Power Engineering, 2012, 33(03): 69-73.
[21] 王雷, 陈政清. 基于时域叠加的反应谱拟合的新方法 [J]. 地震工程与工程振动, 2015, 35(06): 239-244.
Wang Lei, Chen Zhengqing. A New Response Spectra Fitting Method Based On Time-Domain Superposition [J]. Earthquake Engineering and Engineering, 2015, 35(06): 239-244.
[22] Mukherjee S, Gupta V K. Wavelet-based generation of spectrum-compatible time-histories [J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9): 799-804.
[23] Suárez L E, Montejo L A. Generation of artificial earthquakes via the wavelet transform [J]. International Journal of Solids and Structures, 2005, 42(21): 5905-5919.
[24] Hancock J, Watson-Lamprey J, Abrahamson N A, et al. An Improved Method Of Matching Response Spectra of Recorded Earthquake Ground Motion using Wavelets [J]. Journal of Earthquake Engineering, 2006, 10(sup001): 67-89.
[25] Al Atik L, Abrahamson N. An Improved Method for Nonstationary Spectral Matching [J]. Earthquake Spectra, 2010, 26(3): 601-617.
[26] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995.
[27] Ni S-H, Xie W-C, Pandey M D. Generation of spectrum-compatible earthquake ground motions considering intrinsic spectral variability using Hilbert–Huang transform [J]. Structural Safety, 2013, 42: 45-53.
[28] Huang T-L, Lou M-L, Chen H-P, et al. An orthogonal Hilbert-Huang transform and its application in the spectral representation of earthquake accelerograms [J]. Soil Dynamics and Earthquake Engineering, 2018, 104: 378-389.
[29] Li B, Xie W-C, Pandey M D. Generate tri-directional spectra-compatible time histories using HHT method [J]. Nuclear Engineering and Design, 2016, 308: 73-85.
[30] 廖振鹏, 魏颖. 设计地震加速度图的合成 [J]. 地震工程与工程振动, 1988, (01): 12-30.
Liao Zhenpeng, Wei Ying. The Synthesis Of Design Seismic Acceleration Diagram [J]. Earthquake Engineering and Engineering, 1988(01): 12-30.
[31] 刘鹏程, 林皋, 金春山. 考虑地震环境的人造地震动合成方法 [J]. 地震工程与工程振动, 1992, (04): 9-15.
Liu Pengcheng, Lin Gao, Jin Chunshan. The Synthesis Of Artificial Seismic Considering The Seismic Environment [J]. Earthquake Engineering and Engineering, 1992(04): 9-15.
[32] Trifunac M D. A method for synthesizing realistic strong ground motion [J]. Bulletin of the Seismological Society of America, 1971, 61(6): 1739-1753.
[33] Trifunac M D. Preliminary empirical model for scaling Fourier Amplitude Spectra of strong ground acceleration in terms of earthquake magnitude, source-to-station distance, and recording site conditions [J]. Bulletin of the Seismological Society of America, 1976, 66(4): 1343-1373.
[34] Yang L, Xie W-C, Xu W, et al. Generating Drift-Free, Consistent, and Perfectly Spectrum-Compatible Time Histories [J]. Bulletin of the Seismological Society of America, 2018, 108(3): 1674-1690.
[35] Boore D M, Akkar S. Effect of causal and acausal filters on elastic and inelastic response spectra [J]. Earthquake Engineering & Structural Dynamics, 2003, 32(11): 1729-1748.
[36] 周宝峰, 温瑞智, 谢礼立. 非因果滤波器在强震数据处理中的应用 [J]. 地震工程与工程振动, 2012, 32(02): 25-34.
Zhou Baofeng, Wen Ruizhi, Xie Lili. Acausal filter in the strong motion records processing [J] Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(02): 25-34.
[37] 蒲武川, 薛耀辉, 张孟成. 高通滤波对近场脉冲型地震动位移反应谱的影响 [J]. 振动与冲击, 2020, 39(13): 116-124.
Pu Wuchuan, Xue Yaohui, Zhang Mengcheng. Effects of high-pass filtering on displacement response spectrum of near-field impulsive ground motion [J]. Journal of Vibration and Shock, 2020, 39(13): 116-124.
[38] Boore D M, Bommer J J. Processing of strong-motion accelerograms: needs, options and consequences [J]. Soil Dynamics and Earthquake Engineering, 2005, 25(2): 93-115.
[39] EN 1998-1:2004. Eurocode 8: Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings: [S]. 2004.
[40] ASCE 4-98. Seismic Analysis of Safety-Related Nuclear Structures and Commentary: [S]. 1998.
[41] NB 35047-2015. 水电工程水工建筑物抗震设计规范: [S]. 北京: 中国电力出版社, 2015.
NB 35047-2015. Code for Seismic Design of Hydraulic Structures of Hydropower Project [S]. Beijign: China Electric Power Press, 2015.
[42] USNRC. Regulatory Guide 1.60—Design Response Spectra for Seismic Design of Nuclear Power Plants [S]. 2014.
[43] Atkinson G M, Elgohary M. Typical uniform hazard spectra for eastern North American sites at low probability levels [J]. Canadian Journal of Civil Engineering, 2007, 34(1): 12-18.
 
PDF(3397 KB)

Accesses

Citation

Detail

Sections
Recommended

/