The purpose of this study is to generalize the radiative energy transfer method (RETM) to the sandwich coupled plates model. The vibration governing equation of the sandwich plate is deduced, and the wave propagation characteristic parameters of the structure are obtained. Based on the wave method, the energy transfer coefficients of the sandwich coupled plates are deduced. According to the energy density governing equation, the kernel functions of energy density and power flow intensity are obtained. According to Huygens principle, the energy inside the structure can be obtained by the superposition of the direct field energy radiated by the real source and the reflected field energy radiated by the boundary virtual sources. The intensities of the boundary virtual sources are obtained by solving the Fredholm equation of the second type. Numerical results are compared with those of the modal superposition and power flow analysis (PFA) to verify the correctness and accuracy of the established model. By solving a coupled structure of L-shaped sandwich plates, we obtain its energy density and power flow distribution characteristics.
Key words
sandwich plate /
radiative energy transfer method /
energy transfer coefficient /
energy density /
power flow
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 张铁亮,丁运亮,金海波. 蜂窝夹层板结构等效模型比较分析[J]. 应用力学学报,2011, 28(03): 275-282+327.
ZHANG Tie-liang, DING Yun-liang, JIN Hai-bo. Comparative analysis of equivalent models for honeycomb sandwich plates[J]. Chinese Journal of Applied Mechanics, 2011,28(03): 275-282+327.
[2] 赵晓春,李祥宁,李 凯,等. 三明治夹层板振动特性与优化[J]. 中国舰船研究,2013, 8(04): 46-51.
ZHAO Xiao-chun, LI Xiang-ning, LI Kai, et al. Analysis and optimization of the vibration characteristics of sandwich plates[J]. Chinese Journal of Ship Research, 2013, 8(04): 46-51.
[3] 韩敬永. 复合材料夹层板结构热环境下声振特性研究[D].哈尔滨工业大学,2016.
[4] 王勖成. 有限单元法[M]. 北京:清华大学出版社,2003.
[5] 姚振汉,王海涛. 边界元法[M]. 北京:高等教育出版社, 2010.
[6] 周红卫. 高频声振耦合能量有限元若干问题研究[D]. 中国科学技术大学,2015.
[7] 姚德源,王其政. 统计能量分析原理及其应用[M]. 北京:北京理工大学出版社,1995.
[8] Langle R S. On the vibrational conductivity approach to high frequency dynamics for two-dimensional structural components[J]. Journal of Sound and Vibration, 1995,182(4):
637–657.
[9] Park D H, Hong S Y, Kil H G. Power flow model of flexural waves in finite orthotropic plates[J]. Journal of Sound and Vibration, 2003, 264(1): 203-224.
[10] Park D H, Hong S Y, Kil H G, et al. Power flow models and analysis of in-plane waves in finite coupled thin plates[J]. Journal of Sound and Vibration, 2001, 244(4): 651-668.
[11] 江民圣. 任意板及耦合结构能量传递的功率流有限元分析[D]. 济南:山东大学,2015.
[12] 游 进,李鸿光,孟 光. 耦合板结构随机能量有限元分析[J]. 振动与冲击,2009, 28(11): 43-46+202.
YOU Jin, LI Hong-guang, MENG Guang. Random energy finite element analysis of coupled plate structure[J]. Journal of Vibration and Shock, 2009, 28(11): 43-46+202.
[13] Le Bot A. A vibroacoustic model for high frequency analysis[J]. Journal of Sound and Vibration, 1998, 211(4): 537-554.
[14] 钟 强. 结构高频声振统计特性及能量辐射传递模型研究[D]. 中国科学技术大学,2021.
[15] Zhong Q,Chen H,Le Bot A. Radiative energy transfer model for finite anisotropic plates[J]. Journal of Sound and Vibration, 2021, 497(4): 115947.
[16] Le Bot A. Comparison of vibrational conductivity and radiative energy transfer methods[J]. Journal of Sound and Vibration, 2004, 283(1): 135-151.
[17] Le Bot A. Energy transfer for high frequencies in built-up structures[J]. Journal of Sound and Vibration, 2002, 250(2):
247- 275.
[18] Sadoulet-Reboul E, Le Bot A, Perret-Liaudet J, et al. A hybrid method for vibroacoustics based on the radiative energy transfer method[J]. Journal of Sound and Vibration, 2007, 303(3-5): 675-690.
[19] 王 幸. 基于能量辐射传递法的结构高频振动响应分析[D]. 中国科学技术大学,2021.
[20] 王耀仙. 复合材料力学与结构设计[M]. 上海:华东理工大学出版社,2017.
[21] 李 翱. 耦合结构的能量传递特性研究[D]. 中国科学技术大学,2021.
[22] Le Bot A. Foundations of statistical energy analysis in vibroacoustics[M]. Oxford :Oxford University Press, 2015.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}