Real mode approximate decoupling and seismic response analysis of soil-structure interaction system

WANG Changsheng1, LIN Jianhao1, YANG Yan1, XU Jiayun2

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (5) : 184-190.

PDF(1423 KB)
PDF(1423 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (5) : 184-190.
EARTHQUAKE SCIENCE AND STRUCTURE SEISMIC RESILIENCE

Real mode approximate decoupling and seismic response analysis of soil-structure interaction system

  • WANG Changsheng*1, LIN Jianhao1, YANG Yan1, XU Jiayun2
Author information +
History +

Abstract

Aiming at the problem that the coupled modal damping matrix cannot be accurately decoupled in the real number domain in the motion equation of soil-structure interaction system. Firstly, the forced decoupling method is used to decouple the non-classical damping matrix, and then the error caused by the forced decoupling method is analyzed. The real mode approximate decoupling method is proposed to solve the structural system. At the same time, the system response is expressed by the linear combination of displacement and velocity of a series of standard oscillators combined with Laplace transform. Through the example analysis, it can be seen that the seismic response of the structure obtained by the real mode approximate decoupling method is in good agreement with the results obtained by the accurate complex mode method, and its accuracy is higher than that of the forced decoupling method. Especially in the analysis of the dynamic response of the superstructure of the soil-structure interaction system, its advantages are more prominent. The proposed real mode approximate decoupling method has high accuracy, avoids the operation in the complex domain, and is easy to understand in engineering significance. It can be applied to other structural systems with non-classical damping characteristics.

Key words

soil-structure interaction / non-classical damping / real mode approximate decoupling method / seismic response

Cite this article

Download Citations
WANG Changsheng1, LIN Jianhao1, YANG Yan1, XU Jiayun2. Real mode approximate decoupling and seismic response analysis of soil-structure interaction system[J]. Journal of Vibration and Shock, 2025, 44(5): 184-190

References

[1] 张昊,康帅,王自法,等. 考虑土-结构相互作用的框架结构抗震性能分析[J].世界地震工程, 2022, 38 (02): 29-37.
ZHANG Hao,KANG Shuai,WANF Zifa,et al.Seismic performance analysis of frame structures considering soil-structure interaction[J].World Earthquake Engineering,2022,38(02):29-37.
[2] Mohammed E H , Jianxun M , Dong L Y Y .Investigation of small-scaled soil structure model under earthquake loads via small shaking table tests[J].Shock And Vibration, 2022, 2022(1):1-16.
[3]  ABDULAZIZ M, HAMOOD M J, FATTAH M. A review study on seismic behavior of individual and adjacent structures considering the soil – Structure interaction [J]. Structures, 2023, 52:348-369.
[4] 赵凯,夏高旭,王彦臻,等.土–地下结构相互作用的三维弱耦合有效应力分析法[J].岩土工程学报,2022,44(05):861-869.
ZHAO Kai, XIA Gaoxu, WANG Yanzhen,et al. Three-dimensional loosely coupled effective stress method for seismic soil-structure interactions[J]. Chinese Journal of Geotechnical Engineering,2022,44(05):861-869.
[5] 张国栋.土与结构相互作用体系随机地震反应分析[D].武汉大学,2004.
ZHANG Guodong. Random seismic response analysis of soil-structure interaction system[D]. Wuhan University,2004.
[6] 赵密,王维伟,黄景琦,等.地震作用下土-结构相互作用的简化时程分析[J].防灾减灾工程学报,2022,42(01):111-117. 
ZHAO Mi,WANG Weiwei,HUANG Jingqi,et al. Simplified time history analysis for soil-structure interaction under earthquake[J].Journal of Disaster Prevention and Mitigation Engineering, 2022,42 (01):111-117.
[7] 胡静静,余丁浩,李钢,等.考虑土-结相互作用的大型结构高效地震分析方法[J].工程力学,2024,41(03):135-149.
HU Jingjing , YU Dinghao , LI Gang,et al. Efficient seismic analysis method of large structures considering soil-structure interaction[J]. Engineering    Mechanics, 2024,41(03):135-149. 
[8] 张之颖,吕西林,曹文清.软基上土-结构相互作用体系的一个广义简化动力计算模型[J].土木工程学报,2004,(05):70-77.
ZHANG Zhiying,LU Xilin,CAO Wenqing. A simplified dynamic model of ssi system on soft soil foundation[J]. China Civil Engineering Journal,2004,(05):70-77.
[9]  陈灯红,杜成斌.结构-地基动力相互作用的时域模型[J].岩土力学,2014,35(04):1164-1172.
CHEN Denghong,DU Chengbin. A computational model for structure-foundation dynamic interaction in time domain[J].Rock and Soil Mechanics,2014,35(04):1164 -1172.
[10] Zhan P ,Xue S ,Li X , et al. Seismic assessment of large-span spatial structures considering soil–structure interaction (SSI): a state-of-the-art review [J]. Buildings, 2024, 14 (4): 1174.
[11] 姜忻良,张海顺.土-结构非线性相互作用混合约束模态实施方法[J].振动与冲击,2015,34(06):52-56.
JIANG Xinliang,ZHANG Haishun. Mixed constraint modal method for nonlinear soil-structure interaction[J]. Journal of Vibration and Shock,2015,34(06):52-56.
[12] 禹海涛,李衍熹.土-结构动力作用体系混合试验研究进展与探讨[J].中国公路学报,2020,33(12):105-117. 
YU Haitao, LI Yanxi. Review and discussion on recent progress of hybrid simulation for soil - structure dynamic interaction system[J].China Journal of Highway and Transport, 2020,33 (12):105-117.
[13] 唐元辰,陈清军.土-综合体结构相互作用体系地震反应影响因素研究[J].结构工程师,2023,39(03):61-71.
TANG Yuanchen, CHEN Qingjun. Study on Influencing Factors of Seismic Response of Soil-Complex Structure Interaction System [J]. Structural Engineers,2023,39(03):61-71.
[14] 王国波,王垚,王建宁,等.土-结构群相互作用体系地震响应振动台试验研究[J].震灾防御技术,2022,17(04):611-621.
WANG Guobo, WANG Yao, WANG Jianning,et al. Shaking table test study on seismic response of soil-structure cluster interaction system[J]. Technology for Earthquake Disaster Prevention,2022,17(04):611-621.
[15] Çağrı İmamoğlu, Murat Dicleli. Effect of dynamic soil-structure interaction modeling assumptions on the calculated seismic response of railway bridges with single-column piers resting on shallow foundations[J].Soil Dynamics and Earthquake Engineering,2024,181:108624
[16] 景立平,张嘉辉,汪刚等.软土地基核电厂房动力响应振动台试验[J].世界地震工程, 2022, 38 (03): 10-18.
JING Liping,ZHANG Jiahui,WANG Gang,et al. Shaking table test of dynamic response of nuclear power plant on soft soil foundation[J]. World Earthquake Engineering,2022, 38 (03): 10-18.
[17] 潘旦光,付相球,谭晋鹏,等.土-结构相互作用体系结构动力特性复模态识别法[J].建筑结构学报,2023,44(07):196-203.
PAN Danguang, FU Xiangqiu, TAN Jinpeng,et al. Complex-modal-based identification method for structural dynamic characteristics of soil-structure interaction systems[J]. Journal of Building Structures,2023,44(07):196-203.
[18] 潘玉华,王翠坤,时继瑞,等.考虑土-结构相互作用的超高层结构地震非线性分析[J].建筑结构学报,2024,45(06):25-38.
PAN Yuhua, WANG Cuikun, SHI Jirui,et al. Seismic nonlinear analysis of supertall structures considering soil-structure interaction[J].Journal of Building Structures,2024,45(06):25-38.
[19]  Galvín, P, Romero A , Moliner E ,et al. Fast simulation of railway bridge dynamics accounting for soil–structure interaction[J].Bulletin of Earthquake Engineering, 2022, 20 (7) :3195-3213.
[20] 韩庆华,王月,芦燕,等.斜入射地震波下单层球面网壳土-结构相互作用及其地震响应分析[J].振动与冲击,2024,43(03):255-264.
HAN Qinghua,WANG Yue,LU Yan,et al. Soil-structure interaction and seismic response analysis of single-layer reticulated dome under oblique incidence seismic wave[J].Journal of Vibration and Shock,2024, 43(03):255-264.
[21] 谭星,陈卫婷,王陶,等.局部非线性结构的自由界面子结构模态综合法[J/OL].航空学报,1-13[2024-06-23].http://kns.cnki.net/kcms/detail/11.1929.V.20231122.1507.002.html.
TAN Xing, CHEN Weiting, WANG Tao,et al. A free-interface component mode synthesis method for structures with local nonlinearities[J/OL].Acta Aeronautica et Astronautica Sinica,1-13[2024-06-23]. http://kns.cnki.net/kcms/detail/11.1929.V.20231122.1507.002.html.
[22] Zhang Z , Wei H , Qin X .Experimental study on damping characteristics of soil-structure interaction system based on shaking table test[J].Soil Dynamics and Earthquake Engineering, 2017, 98:183-190.
[23] Adhikari S. An iterative approach for nonproportionally damped systems[J].Mechanics Research Communications, 2011, 38(3):226-230.
[24] Suleiman H ,Afra H ,Abdeddaim M , et al. An extension to Adhikari iterative method: A novel approach for obtaining complex eigensolutions in linear non-classically damped systems [J]. Structures, 2024, 60:105832.
[25] 李创第,葛新广,邹万杰,等. 一般非对称非经典结构响应的二阶实振子精确解耦法 [J]. 应用力学学报, 2014, 31 (02): 212-217.
LI Chuangdi,GE Xinguang,ZOU Wanjie,et al. Exact decoupling method of general asymmetric and non-classical structure in second-order real oscillatory vibration[J].Chinese Journal of Applied Mechanics, 2014, 31 (02): 212-217.
[26] 付相球,潘旦光.基于实模态的非比例阻尼体系复模态叠加法[J].振动工程学报,2021,34(06):1142-1150. 
FU Xiangqiu,PAN Danguang. Complex mode superposition method of non – proportional damping system based on real modes[J]. Journal of Vibration Engineering,2021,34(06):1142-1150.
[27] 俞瑞芳,周锡元.非比例阻尼弹性结构地震反应强迫解耦方法的理论背景和数值检验[J].工业建筑,2005,(02):52-56. 
YU Ruifang, ZHOU Xiyuan. Theoretical and numerical research on forced uncoupling method Fors eismic response of non-Classically damped linear system[J].Industrial Construction ,2005,(02):52-56.
[28] Jorge C ,Alejandro B .Non-proportionality indices and error constraint in modal analysis of viscously damped linear structures[J].Applied Sciences,2021,11(13):6064.
[29]  Morzfeld M , Ajavakom N , Ma F .Diagonal dominance of damping and the decoupling approximation in linear vibratory systems[J].Journal of Sound and Vibration, 2008, 320(1):406-420.
[30] Volpi L P, Ritto T G. Probabilistic model for non-proportional damping in structural dynamics[J]. Journal of Sound and Vibration, 2021, 506 (1): 116145.
[31] 秦金旗,唐驾时.非比例结构阻尼系统的振动控制[J]. 湖南大学学报(自科版), 2007, 34(10):49-52. 
QIN Jinqi, TANG Jiashi. Vibration control for non-proportionally structure damping systems[J]. Journal of Hunan University(Natural Sciences) , 2007, 34(10):49-52.
PDF(1423 KB)

Accesses

Citation

Detail

Sections
Recommended

/