Dynamic modelling and test study on cable driven limiting-position lifting load stabilizer

REN Zhaopeng1, HUANG Zhe1, WEI Yi1, WANG Shenghai1, 2, SUN Yuqing1, 2, CHEN Haiquan1, 2

Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (5) : 26-37.

PDF(6885 KB)
PDF(6885 KB)
Journal of Vibration and Shock ›› 2025, Vol. 44 ›› Issue (5) : 26-37.
VIBRATION AND MECHANICS SCIENCE

Dynamic modelling and test study on cable driven limiting-position lifting load stabilizer

  • REN Zhaopeng1, HUANG Zhe1, WEI Yi1, WANG Shenghai*1,2, SUN Yuqing1,2, CHEN Haiquan1,2
Author information +
History +

Abstract

Considering the problem that the offshore-cranes cannot finish the hoisting assignment under the complex marine environment. Firstly, the dynamic model of the offshore-cranes under the stochastic ocean waves excitation was established and analyzed. Then the parallel cable-driven payload limiting-position mechanism (PCD-PLM) was designed and the adaptive anti-swing tension control method (PCD-AAT) was proposed to realize the stable control of payload. The payload remains stable state, even if the offshore-crane is affected by external excitation. The swing problem of payload is solved when the offshore-crane working under the heavy ocean conditions. Ensure that the hoisting assignment can be finished safely and efficiently. Finally, the offshore-crane anti-swing experiment platform was built to verify the effectiveness and practicability of the PCD-PLM and PCD-AAT. The simulation and experimental results show that the swing-angle of the payload reduced 99% and 80%, the stability control effects exceed 99% and 80%. The PCD-AAT show excellent dynamic tracking performance and robustness.

Key words

parallel cable-driven / offshore crane / payload limiting-position / adaptive tension control

Cite this article

Download Citations
REN Zhaopeng1, HUANG Zhe1, WEI Yi1, WANG Shenghai1, 2, SUN Yuqing1, 2, CHEN Haiquan1, 2. Dynamic modelling and test study on cable driven limiting-position lifting load stabilizer[J]. Journal of Vibration and Shock, 2025, 44(5): 26-37

References

[1] Parker, G., Petterson, B., Dohrmann, C., and Robinett, R., ‘Command shaping for residual vibration free crane maneuvers’, in Proceedings of the American Control Conference, 1995, pp. 934-938.
[2] Henry, R., Masoud, Z., Nayfeh, A., and Mook, D., ‘Cargo pendulation reduction on ship-mounted cranes via boom-luff angle actuation’, Journal of Vibration and Control 7, 2001, 1253-1264.
[3] Rincon L, Kubota Y, Venture G, et al. Inverse Dynamic Control via “Simulation of Feedback Control” by Artificial Neural Networks for A Crane System[J].Control Engineering Practice, 2020, 94: 1-18.
[4] MARTIN I A, IRANI R A. Evaluation of Both Linear and Non-Linear Control Strategies for a Shipboard Marine Gantry Crane[C]// OCEANS 2019 MTS/IEEE SEATTLE. IEEE, 2019.
[5] Ngo, H. Q, Hong, et al. Sliding-Mode Antisway Control of an Offshore Container Crane[J].IEEE/ASME transactions on mechatronics: A joint publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division,2012,17(2): 201-209.
[6] WANG S H, FERRI A, SINGHOSE W. Slipping dynamics of slender-beam payloads during lay-down operations [J].Journal of Dynamic Systems Measurement & Control, 2018, 140(8): 081001.
[7] Ku, N.K.; Cha, J.H.; Roh, M.I.; Lee, K.Y. A tagline proportional-derivative control method for the anti-swing motion of a heavy load suspended by a floating crane in waves. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2013, 227, 357–366.
[8] LIN J Z, FANG Y C, LU B, et al. Constrained model predictive control for 3-D offshore boom cranes [J]. Control Engineering Practice, 2024, 142, 105741.
[9] PARKER G, GRAZIANO M, LEBAN F, et al. Reducing crane payload swing using a rider block tagline control system[C]// Proceedings of OCEANS 2007-Europe. Aberdeen, 2007: 1-5.
[10]吴俊杰,吉阳,陈海泉,等.船用起重机吊盘式机械防摇系统的设计与试验[J].船舶工程,2018,40(05): 41-45+67. 2018.05.041.
WU Junjie, JI Yang, CHEN Haiquan, et al. Design and Experiment of Disc-type Mechanical Anti-swing System of Ship Crane[J]. Ship Engineering, 2018, 40 (05): 41-45+67.
[11]王阳.船用起重机防摇装置设计研究[J].舰船科学技术,2013,35(07):105-108.
WANG Yang. Research and design of an anti-swing mechanism for a shipborne crane[J]. Ship Science and Technology, 2013, 35(07): 105-108.
[12]严兴腊.船舶起重机波浪补偿装置[J].中国水运(下半月),2018,18(07):77-78+81.
YAN Xingla. wave compensation device for Ship-mounted Crane[J]. China Water Transport,2018,18(07):77-78+81.
[13]HU Y, TAO L, LV W. Anti-pendulation analysis of parallel wave compensation systems[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2014, 230(1): 177-86.
[14]王建立,王生海,孙玉清等.船用起重机伸缩套管防摆装置动力学分析与试验[J].振动与冲击, 2022, 41(11): 141-148. DOI: 10.13465/j.cnki.jvs.2022.11.018.
WANG Jianli, WANG Shenghai, SUN Yuqing, et al. Dynamic Analysis and Tests of Anti-swing Device for Telescopic Sleeve of Ship-mounted Crane[J]. Journal of Vibration and Shock, 2022, 41 (11): 141-148.
[15]方楠,黄哲,赵庭祺,等.船用起重机四旋翼减摇吊钩动力学特性[J].广东海洋大学学报,2024,44(04):129-138.
FANG Nan, HUANG Zhe, ZHAO Tingqi, et al. Dynamic characteristics of Anti-swing Hook of Quad-rotor of Marine crane. [J]. Journal of Guangdong Ocean University, 2024, 44(04): 129-138.
[16]邓晨旭,孙海龙,赵明慧,等.船用起重机磁流变防摆装置动力学分析和实验验证[J].科学技术与工程,2024,24(17):7395-7405.
DENG Chenxu, SUN Hailong, ZHAO Minghui, et al. Dynamic analysis and experimental verification of magnetorheological anti-swing device for marine cranes[J]. Science Technology and Engineering, 2024, 24( 17): 7395-7405.
[17]Martin I A , Irani R A .A generalized approach to anti-sway control for shipboard cranes[J]. Mechanical Systems and Signal Processing, 2021, 148(2):107168. 2020.107168.
[18]Kimiaghalam, B., Homaifar, A., & Sayarrodsari, B. (2001). An application of model predictive control for a shipboard crane. 2, In Proceedings 2001 American control conference (ACC) (pp. 929–934).
[19] NGO Q H, HONG K-S. Sliding-Mode Antisway Control of an Offshore Container Crane [J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(2): 201-9.
[20]杨立秋,宋立忠.船用起重机消摆系统的专家PID控制[J].计算机仿真,2011,28(10):161-164.
YANG Liqiu, SONG Lizhong. Expert PID Control of Ship mounted Crane Pendulation Reduction System[J]. Computer Simulation,2011,28(10):161-164.
[21]孙宁,张建一,吴易鸣等.一种双摆效应桥式起重机光滑鲁棒控制方法[J].振动与冲击,2019, 38(22): 1-6. DOI: 10.13465/j.cnki.jvs.2019.22.001.
SUN Ning, ZHANG Jianyi, WU Yiming, et al. Continuous robust control for double-pendulum overhead cranes[J]. Journal of Vibration and Shock, 2019, 38(22): 1-6.
[22] Fang Y C, Wang P C, Sun N. Dynamics Analysis and Nonlinear Control of an Offshore Boom Crane[J].IEEE Transactions Industrial Electronics, 2014, 61(1): 414-427.
[23] Qian Y Z, Fang Y C. A Learning Strategy Based Partial Feedback Linearization Control Method for an Offshore Boom Crane[C]. 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 2015: 6737-6742.
[24]Qian Y Z, Fang Y C. Dynamics Analysis of an Offshore Ship-Mounted Crane Subject to Sea Wave Disturbances[C]. 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 2016: 1251-1256.
[25] WU Q, SUN N, Yang T, et al. Deep Reinforcement Learning-Based Control for Asynchronous Motor-Actuated Triple Pendulum Crane Systems With Distributed Mass Payloads[J], IEEE Transactions on Industrial Electronics, 2024, 71(2), 1853-1862.
[26] 金鸿章,姚绪梁. 船舶控制原理[M]. 哈尔滨:哈尔滨工程大学出版社,2013.
JIN Hong-zhang, YAO Xu-liang. Ship Control Principle, Second Edition [M]. Haerbin: Harbin Engineering University Press, 2013.
PDF(6885 KB)

Accesses

Citation

Detail

Sections
Recommended

/